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i. INTRODUCTION

In support of Space Division's concern about the safety of orbiting pay-

loads, the Space Hazards Section of the Astrodynamics Department was tasked to

develop an analytical model for debris analysis after an orbital breakup. The

results of the model were to be used in developing a computer program which

could examine the collision hazard to any spacecraft from the cloud of parti-

cles resulting from an orbital breakup. The study activity consisted of

defining the requirements, examining the available hypervelocity impact data,

and developing the appropriate breakup models which could be used to determine

the fragment population and velocity distributions for particles in orbiting

debris clouds.

Section 2 and Appendix A, written by V.A. Chobotov, derive the analytical

model for the debris cloud, assuming a breakup or a collision with a space

object in a circular orbit. Linearized equations for relative motion are used

to determine the shape and volume of the debris cloud for an initially iso-

tropic distribution of particle spread velocities. Spatial density is obtained

for two representative breakup models and the collision probability of a parti-

cle and a resident space object determined. The effects of earth's oblateness

on the long-term evolution of the cloud are examined.

Section 3, written by D.B. Spencer, compares the exact with the linear

approximation results from Section 2. It is shown that the linear approxima-

tion solution generally is valid for the case of low particle spread velocities

(< 100 ft/sec). For greater velocities (> 1000 ft/sec), the radial and

tangential position components for orbital plane ejections begin to deteriorate

as time increases. The differences between the exact and linear solutions for

particle trajectories are illustrated.

In Section 4, also written by D.B. Spencer, the volume of the debris

cloud is reexamined with the inclusion of earth's oblateness and atmospheric
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drag effects. Time-dependent functions are derived which model the changes in

the cloud profile as the result of such perturbations. These functions are

inputs also to the "DEBRIS" computer simulation which was developed at The

Aerospace Corporation for the collision hazard assessment purpose.

Spction 5 and Appendix B, contributed by D.L. Schmitt, describe a method

for determining the masses and velocities of fragments resulting from a hyper-

velocity collision in orbit and compute their orbital parameters. Tabular

data are given showing the percentages of fragments that reenter or stay in

orbit. Plots of orbital distributions and reentry footprints are illustrated.

Section 6, written by R.P. Gupta, generalizes the fragment mass and

velocity computation described in Section 5. The methodology presented in

Section 6 can be used to determine number, mass, size, and velocity distribu-

tion of fragments for different mass ratios of impacting objects and includes

the effects of energy loss due to heat and light generated by impact.

Section 7, authored by D.T. Knapp, develops a new and more flexible model

for spacecraft collisions. A system of transfer functions characterizes the

collision in terms of the incident object masses and velocities and a set of

parameters defined to reflect the several degrees of freedom of the system

constrained by conservation of mass, momentum, and energy. This allows

sampling of many parametric values for a statistical or sensitivity analysis

of the systeir. Referred to as the Kinematic Model, it overcomes significant

limitations of earlier models. It has been used by The Aerospace Corporation

to model tests involving on-orbit collisions, and its results have been

verified by test data.

In Section 8, contributed by R.G. Hopkins, the description of the program

DEBRIS is provided. The program determines the intervals during which a space-

craft travels through an expanding cloud and calculates the probability of

collision associated with each transit.

12



Finally, Section 9, written by D.B. Spencer, examines the effects of

orbital eccentricity on the volume of the debris cloud. Small values of

eccentricity are added to the originally circular orbit of the disintegrating

body (as was assumed in Section 2); by using a differential correction

process, the changes in the cloud volume are determined.

In summary, the results presented in this report represent the theoreti-

cal background and description of the DEBRIS program development which can be

used to assess the collision hazard for resident space objects following a

breakup or a collision of an object in orbit.
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2. DYNAMICS OF DEBRIS AND THE CONSEQUENCES OF ON-ORBIT BREAKUPS

2.1 INTRODUCTION

Continuous use of space over the last 30 years has built up a large num-

ber of objects in orbit, the majority of which were generated by explosions of

spacecraft or rocket stages. Late 1970s studies at the Johnson Space Center

concluded that fragments from collisions between space objects would be a major

source of debris (Ref. 1). Studies at The Aerospace Corporation examined the

collision hazard to operational spacecraft from space debris including the

effects of position uncertainty on the probability of collision between any two

objects in orbit (Ref. 2). Other studies, described in Reference 3, considered

the distribution of some 5000 NORAD Catalog objects as a function of altitude

and orbital inclination. Encounter parameters such as miss distance and rela-

tive velocity were examined by computer simulation for low-altitude and geosyn-

chronous orbit spacecraft. Representative space shuttle and geosynchronous

mission collision probabilities were determined.

One of the early studies which addressed the evolution of a fragment

cloud in orbit is discussed in Reference 4. In that study, the time and place

of a satellite disintegration were determined from the orbits of the individual

particles (fragments) obtained by observation. Methods of statistical mecha-

nics also were used to study the evolution of the fragment cloud by treating

the fragments as an ensemble of noninteracting particles. The spatial density

was calculated as a function of position, time, and initial velocity

distribution.

This study considers the problem of debris cloud evolution by examining

representative particle trajectories. Linearized equations for relative motion

in orbit are used to obtain the trajectories of particles with specified

initial velocity distributions in three orthogonal planes. The volume of the

cloud is computed analytically as a function of time, and the spatial density

is calculated for representative breakup models. Long-term effects due to

earth's oblateness are evaluated, and the near- and long-term collision

hazards for representative spacecraft are examined.
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2.2 ANALYSIS

Consider an explosion or a collision event in a circular orbit such as

that illustrated in Figure 1. An orbiting orthogonal reference frame xyz is

centered at the origin of the event at time t = 0 such that x is directed

opposite to the orbital velocity vector, y is directed along the outward

radius, and z completes the triad (along the normal to the orbit plane). The

linearized rendezvous equations (Ref. 5) can be used to determine the position

of a particle leaving the origin of the coordinate frame with a velocity Av;

they are of the form

/-3e 4 e)x 2 e o )0
X = \- + sin 0) o + (l - Cos o)

( sin -- s+ -(1(W

y = (cos 0 -1) + ;o sin E)
0

z
z = - sin 0

where Av =;2 +2 +2)1/2

y
y 'vAV

t= t =o

Figure 1. Cloud Dynamics
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The xy,z coordinates represent particle position at time t = (/W,

where e is the in-orbit plane angle and w is the angular rate of the circular

orbit. The * o , i terms are initial velocity components imparted to the

particle along the x,y,z axes, respectively. It is assumed that Av << v.

Equation (1) can be normalized with respect to Av/w as follows:

- (-3e + 4 sin e)h + 2(1 - cos e)r
v-x

=X

. 2(cos e - 1)h + (sin e)r (2)
av

Y

zw

1= n sin E

=Z

where

h x0/v, r =; /Av, n /Av, and h2 + r2 +n 2  1 (3)

In matrix form

X ~ all 1 a12 a131
Y = a21  a22  a23 r
Z a31  a3 2  a33 n

S[M r (4)
n

where

a 1 1 = (-3 e + 4 sin e) a12 2(1 - cos 9) a13 = 0

a2 1 = 2(cos 0 -1) a2 2 =sin e a23 = 0

a31 = 0 a32 0 a33 = sin 0

Equations (4) can be plotted as a function of e for different values

of h, r, and n satisfying condition (3). If, for example, the initial velocity

17



Av distribution for the particles is circular in the x,y plane, then h = cos A*,
h2 2

r = sin A*, 0 < &< 360, and h + r 2f= I with n = 0. The resultant cloud

outline is illustrated in Figure 2 for several values of 0.

y
0 = 0, 3600

Y j ,

L__ _

z

11

Figure 2. Debris Cloud in Orbit Plane

Representative cloud outlines in nondimensional units are shown in

Figure 3. This figure illustrates the cloud outlines in the plane of the

orbit (xy) at four different times after breakup. The straight line configura-

tion results after one revolution (period of the nominal circular orbit). It

shows that an equal number of particles are leading and lagging as expected

from the uniform velocity distribution assumed initially at e = 0*.
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-6.00

-12.0

-16.0 -12.0 -8.00 -4.00 0.000 4.00 8.00 12.0 16.0

AV

Figure 3. Cloud Contours in Orbit Plane (to scale)

For a velocity distribution that is circular in the xz plane, the cloud

outlines in Figure 4 represent the contours in the cross-track (xz) plane. A

straight line configuration occurs at e = 180' and 360* where all particles

cross the orbit plane.
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X = x0

Figure 4. Cloud Contours in Cross-Track Plane (to scale)

2.3 VOLUME OF DEBRIS CLOUD

The volume of the debris cloud can be expressed analytically in terms
of the elements of the transition matrix M in Eq. (4). If, for example, h,r,n

are the orthogonal components of a sphere of unit radius, then the determinant
of M represents the volume of the cloud at any time t = ON . The positive

cloud volume, normalized to (Av/w) 3 , is of the form

41r

VOLUME = T Idet [M]I

4w i(ad + b2 )d (5)

20



where a = all, b = a 1 2 , d = a22, and where 47r/3 is the volume of a unit

sphere. A further discussion of this theory is presented in Appendix A.

Equation (5) is plotted in Figure 5 where a linear approximation for the

volume also is shown.

In units of (Av/), the volume becomes

3

VOL = VOLUME (v) (6)

300 -

240 -

180 -

120
_(deg)

6.65

60

0
0 150 300 450 600 750 900 1050

THETA (deg)

Figure 5. Cloud Volume versus Time

For a circular, low-altitude orbit with Av = 100 and 200 m/s and

.= 1.1 1 , the volume of the debris cloud is illustrated in Figure 6.

Note that the volume vanishes at the integral values of 0 = 2w and e = w and

for e between 5000 and 5500 and again near e = 9000. The latter zeros are

21



caused by the area of the cloud in the orbit (xy) plane collapsing to a line

due to the linearization of the equations of motion. A condition that the

area not vanish anywhere except at e = 0, Ir, 21, et cetera, can be satisfied by

ad + b2 > 0 (7)

or

ladi + b2 > 0 (8)

which results in the cloud volume function shown in Figure 7 generated using

Eq. (5) with ad > 0, which ensures that the condition (8) is always satis-

fied. This approximation for the cloud volume improves as e increases when

ladl >> b2  (9)

2.4 SPATIAL DENSITY

Assuming uniform distribution of the particles in the cloud, the number

of which is to be determined later, the density is of the form

p = N/VOL (10)

where N is the number of particles in the cloud. The accuracy of this result

is reasonably good for low values of the particle spread velocities (e.g., Av

< 100 m/s).

A "mean" value for p may, for example, be obtained approximately as

N (11)
Pav (VOL) av

where

(VOL) _= (deg)
av 6.65 0
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Figure 6. Cloud Volume in Low Earth Orbit
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Figure 7. Cloud Volume versus Time (corrected)
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is an arbitrarily assumed linear function of e, as can be seen from Figure 5.

The volume of the initial spherical cloud in this case increases linearly with

time. Such an approximation is valid up to a quarter revolution (E = 90*)

when the "mean" volume is

3

(VOL) = 13.53(- v ) (12)
av

Thus, for example, if tv = 100 m/s, a = 1.1 x 10 s , then

(VOL)av = 1.016 x 10 7(km)3  (13)

For Av = 200 m/s, the volume is a factor of (2)3 greater. For

Av = 100 m/s, the spherical cloud diameter at 1/4 revolution (E = 90*) is 269 km

which compares with 285 km if obtained as a linear function of Av.

2.5 SHORT-TERM COLLISION HAZARD

The probability that a spacecraft will collide with a fragment while

passing through a debris cloud is proportional to the spatial density in the

cloud, pay, spacecraft projected area, A, spacecraft velocity relative to

the cloud, VR, and the time, t, spent in the cloud. Thus

p(col) = pavAVRt (14)

where p(col) = collision probability per pass.

The product V Rt is the path length through the cloud. It is the

diameter D of a spherical cloud for a spacecraft passing through the center of

the cloud. The probability of collision, then, is of the form

p(col)/A = pavD (15)
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where

3 6(VOL)

D = v

Evaluation of Eq. (15) requires knowledge of N and Av to obtain

pav and (VOL)av. Laboratory hypervelocity impact experiments, such as

are described in Reference 6, for example, have shown that the number versus

size distribution for ejecta fragments is of the form

-0. 7496

N = 0.4478(M!-) (16)
e

where N is the cumulative number of ejecta with mass M or greater and

M = M v2 where M is the mass of the smaller body (projectile) and v is thee p p
collision velocity.

Equation (16) and Figure 8 from Reference 6, which illustrate fragment

velocity distribution from one laboratory test with an impact velocity of

3.5 km/s, were used to obtain the distributions of fragments in Table I from

an assumed collision of two objects in orbit. Each of the three clouds corres-

ponds to a different particle size.

A second distribution is illustrated in Table 2 which specifies a range

of particle sizes for each spread velocity group.

The probability of collision of a spacecraft and a debris particle based

on Eq. (15) is shown in Figure 9. The curves labeled NASA and Aerospace

correspond to the distributions of debris particles in Tables i and 2, respec-

tively.

The results show that the collision hazard decreases rapidly after the

event (0 = 0 in Fig. 9), but that the magnitude of the hazard is greatly

dependent on the assumed distribution. The probabilities for each of the

three cloud distributions in Tables I and 2 were added to obtain the results

in Figure 9.
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Figure 8. Velocity Distribution (Ref. 6)

Table i. NASA--Velocity Distribution

Cloud Number of Particles Spread Velocity Particle Size
(N) Av(m/s) d(cm)

1 200 20 10
2 20000 200 1
3 3000000 1000 0.1

Table 2. The Aerospace Corporation--Velocity Distribution (Kinematic model)

Cloud Number of Particles Spread Velocity Particle Size
(N) Av(m/s) d(cm)

1 200000 0 to 100 0.1 to 120
2 500000 0 to 800 0.1 to 60
3 1000000 0 to 2000 0.1 to 6
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2.6 LONG-TERN EFFECTS

The debris particles in the cloud tend to spread along the circumfer-

ence of the nominal orbit, in time assuming the shape of a torus with two

"pinch" points as illustrated in Figure 10. The pinch points result from the

orbital intersections of the debris particles where, theoretically, the volume

of the cloud becomes zero. All particles pass through the point of disinte-

gration (9 = 0) at different times. They also pass through the orbit plane

at 0 = 180 ° along a line on the radius vector. The probability of collision

near the pinch points can be much greater where the cloud volume initially is

very small. The effect of orbit perturbations (e.g., earth's oblateness, air

drag, etc.) is to slowly increase the volume at the pinch points and thus de-

crease the probability of collision. In the long term, the motion of the line

of apsides and nodal drift tend to widen the pinch points and spread the cloud

envelope until it completely envelops the earth. In this steady-state condi-

tion, the collision hazard is reduced to a minimum and can be compared with

the existing background environment, i.e., micrometeoroids, man-made debris,

and so forth. An evaluation of the apsidal and nodal drifts is considered in

the following sections.
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2.7 CLOUD STRUCTURE

If the particles' individual orbital parameters are unknown, the expected

mean values for these parameters can be obtained probabilistically for any

specified spread velocity distribution. A change in the particle semi-major

axis Aa can be computed as a function of the spread velocity vector, Av, and

the orbital velocity v geometry. This can be done from a functional relation-

ship between Aa, Av, and *, the angle between v and Av, as follows.

Consider the specific energy of a particle orbit of the form

E - (17)
2a

where p = gravitational constant. Taking differentials

AE= P a
2a

2

S-E Aa (18)
a
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and

AE -Aa (19)
E a

This equation requires an explicit expression for AE which is the change in

the particle orbit energy as a result of the change in its velocity Av.

This is of the form

= ( + 4)2 _ 1 (4)2
= 2 2

4 4

(v +Av (' v+ av) - 2

2 2

22

v Av cos$ for v << (20)

Thus, from Eqs. (17) and (18)

AE _ _

E a

V AV Cos for-L< «1
E v

2av Av cos * (21)
-Ii

or

Aa av Av cos
2a P

- cos 0 (22)
V

1/2since v = (p/a)

A general approximate relationship between Aa, Av, and * for
small values of 6v, therefore, is of the form

La = &v cos * (23)
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where

&a Aa

2a

6v AV
v

Equation (23) describes the internal structure of the cloud. For an

exact relationship, the (Av) 2/2 term in Eq. (20) must be retained.

2.8 PROBABILITY DISTRIBUTION

The functional relationship between Av, v, and 0 expressed in Eq. (23)

is plotted in Figure 11. Equation (23) or Figure 11 can be used to obtain

0.080

ii 0.000

-o.04o .6v, cos

-0.040--0. 000

V

Figure 1.1. Internal Structure of Cloud
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orbital parameter probability distributions for groups of particles with

specified spread velocity ranges. If, for example, an isotropic spread

velocity distribution is assumed as shown in Figure 12, then the probability

that Av will be within an angle * of v is

2AZ
p - ASPH

41r v 2 (1 -cos )

4w v

= I - cos t (24)

where AZ is the area of a spherical zone defined by the cone angle *, and ASPH

is the area of the sphere of radius v.

Y

AZ

Vx

AZ

ASPH

Figure 12. Isotropic Spread Velocity Distribution
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Using Eqs. (23) and (24), we find that the probability distribution

function is of the form

p &a (25)
&V

or

6a = (I - p)&v (26)

Thus, the mean or the "expected" change (corresponding to p = 0.5) in

6a is

6a- + v (27)

2

where + corresponds to whether * is less or greater than YI[2. One-half of

the particle orbits, therefore, will have a change in the semi-major axes of

.Av)
<Aa> + a -) (28)

Equation (25) is plotted in Figure 13 with 6v as a parameter.
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PROBABILITY
0.800 P - 1-cos

by
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ba

Figure 13. Probability Distribution for 6a = Aa/2a
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2.9 EARTH'S OBLATENESS EFFECTS

The primary, long-term orbit perturbation effect on the evolution of

the debris cloud is earth's oblateness. The.J 2 term in the earth's gravita-

tional potential accounts for earth's oblateness and causes apsidal and nodal

rotation. This in turn results in a constantly increasing volume of the cloud.

In order to determine the cloud growth rate due to J2 9 it is necessary to

determine the inclination i, semi-major axis a, and eccentricity e for each
0

particle orbit. The apsidal rotation w and nodal regression 8 are then

given by the equations

•5 2
=K(2 - sin i) (29)

2

= -K cos i (30)

where

K - 9.9639 - deg/day
(I - e 2 ) 2 \a

R = earth equatorial radius (31)e

The initial, pinched ring shape of the cloud (such as is shown in

Fig. 10) eventually spreads around the earth due to particle orbit apsidal and

nodal rotation effects. The rate at which this steady-state condition is

approached can be obtained from the mean expected values <>, <5> for the

apsidal and nodal rotation rates, respectively.

Consider, for example, the case of isotropic spread velocity distribu-

tion in a low-altitude circular orbit with the following parameters:

AV = 100 M/s

a = 6924 km

v = 7.63 km/s (32)

i = 98*

33



For this case, 6v = Av/v = 0.0131, and the probability density

distribution for &a is as shown by the dashed line in Figure 14 (see Section

3). From Figure 14 or Eq. (28)

<Aa>= + a Sv

+ 90.7 km (33)

Particles with the positive mean change of the semi-major axis (one-

half of all fragments) have orbits with higher energy than that of the parent

body, while those with negative have lower energy. The corresponding mean

apsidal and nodal rotation rates from Eqs. (24) through (31) are

K = 9.963( <a-)K+ \a <a>

K+ = 7.79 deg/day (34)

K- = 7.11 deg/day

L+> = 7.79(2 - 2.5 sin 2 98-)

= -3.52 deg/day

= 7.11(2 - 2.5 sin 2 98')

= -3.21 deg/day

<0 > = -7.79 cos 98*+

= 1.08 deg/day

<Q > = -7.11 cos 98*

= 0.989 deg/day (35)
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The relative mean apsidal and nodal rotation rates for the two groups

of particles are

-= 4 + > 4 >+

= -0.31 deg/day

<A> = <+ > _ - >
+

= 0.091 deg/day (36)

Relative closure of the two groups of particles occurs when <4L> and <46>

are 1800.

The corresponding mean periods are

T 1800

1800

.31 581 days = 1.6 years

1800

1800
-0.091= 1978 days

= 5.4 years (37)

2.10 SUMMARY AND CONCLUSIONS

A new and simple method has been described in the report which can be

used to examine the short-term collision hazard for a spacecraft passing

through a cloud of particles resulting from a breakup of an object in orbit.

The method uses linearized equations for relative motion to compute the volume

of the cloud of particles as a function of the initial spread velocities,

orbital angular rate, and time.
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A representative short-term collision hazard for a spacecraft passing

through the center of the cloud was computed under certain simplifying

assumptions. The results showed that the greatest hazard occurs at or shortly

after the breakup event when the cloud volume is small and the density large.

The collision hazard was found to decrease rapidly with time.

The effects of earth's oblateness on the evolution of the cloud also

were examined. The results showed that the initially toroidal debris cloud

becomes a spherical shell due to nodal and apsidal rotation effects of the

particle orbits.

The long-term collision hazard thus is seen to be greatly reduced over

a period of several years. A more general case of a spacecraft entering an

expanding debris cloud is considered in Section 8. The probabilities of

collision with a particle in the cloud are calculated using program DEBRIS,

where the spacecraft path through the cloud is determined and the corresponding

probabilities of collision are obtained.
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3. COMPARISONS OF EXACT AND LINEAR SOLUTIONS

3.1 INTRODUCTION

Whenever a dynamical problem is evaluated, the question arises of

whether to use the exact equations of motion or the linearized set. The pri-

mary concern when using the linearized version is the violation of the assump-

tions made; for if the assumptions remain valid over the range of interest,

then the linearized solution should be an accurate portrayal of what is actu-

ally happening. In this section, the dynamical equations of relative motion

between two bodies are studied, both the linearized version and exact version,

and the solutions are compared for accuracy. Also, when the most accurate of

these results is used to determine the position of many particles relative to

a rotating reference point, an approximate volume in space can be found which

could represent the region of space occupied by debris from an on-orbit

breakup of a spacecraft.

3.2 ANALYSIS

Assume the satellite in orbit as a point moving in a known giavity

field. At any given time, the position and velocity vectors, in an earth-

based inertial frame, are known from telemetric measurements. When the

orbital breakup begins, a multitude of particles will move away from their

previous position (the center of mass, or CM) at some velocity. This is

similar to a probe being ejected from a host ship at a known initial

velocity. This ejecta now moves in its own, unique orbit.

By propagating the Av vector in all directions and in three dimen-

sions, one can determine the maximum distances from the former center of mass.

When the debris volume is approximated as a growing torus, as shown in

Figure 14, the time-varying volume is approximately equal to

V(t) = R - - Zm sin -  
- si (38)
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where

x = maximum distance in the -x direction (leading CM)

X min = maximum distance in the +x direction (trailing CM)

ym, = maximum distance in the +y direction (outside CM)

Ymin = maximum distance in the -y direction (inside CM)

z = maximum distance in the +z direction (above CM)

z min = maximum distance in the -z direction (below CM)

R = distance from the center of the earth to CM

Figure 14. Torus Model

Analytical expressions, on the other hand, allow for simplified

solutions to complex problems. For circular orbits, an approximate solution

describing relative motion between two bodies revolving about the same

gravitational attracting mass is the Clohessy-Wiltshire equations. In matrix

form, the analytical solution is
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r 42
x I 6(wt - sin cat) 0 -3t + - sin wt (-cos 0 x

W W 0

y 0 4 - 3 Cos wt 0 -(-1 + cos wt) - sin wt 0 YO
y o o - 3~ oos (t 0

z 0 0wCos Wt 0 0 sin wt z (39)
-0

0 6w(l - cos wt) 0 -3 +4 cos wt 2 sin wt 0 x
0

0 3w sin wt 0 -2 sin wt cos wt 0 yo

0 0 -. sin wt 0 0 COS Wt 0

S[(tO)] o (40)

Since the particles are at the origin of the coordinate frame at t = 0, the

initial state vector is

.o = {0, 0, 0, T (41)

Thus, if position information is all that is desired, then the system reduces

to

X, -t+ sin wt 2-(1-CosOit 0

2(-1 + COS Wt) i sin wt 0 (42)

z 0 0 'sin wt j
(0 0

{x} = [0121 {Xo} (43)

where [ I is the submatrix in the upper right-hand position of the tran-

sition matrix 4(t,O) and is similar to Eq. (4). The volume enclosed in this

space is found by the determinant of *12 multiplied by 41r/3 [an expansion

of Eq. (5)]

V = -41 Isin 0 [(-30 + 4 sin 6) sin e + 4(1 - cos e)2]1(1Y) (44)

39



where e = wt, and Av is the particle relative velocity.

*2 *2 *2 1/2(

Av = (x° +y +z ()

Applying what is now known to the problem of on-orbit breakup of a

spacecraft, one can determine the range of validity of the Clohessy-Wiltshire

equations.

3.3 RESULTS

The range of validity can be determined by comparing the effects of many
4

different Av vectors on the exact and linear solutions of the problem.

In each case studied, the Av vector was propagated in six directions: positive

and negative, tangential, radial, and out of plane. The orbit in study is a

low-altitude orbit, with an angular rate, w, of 1.1 x 10- 3 rad/sec. Allowing

the magnitude of Av to range from 1 to 1000 ft/sec gave a wide range of results

which are summarized below.

A good comparison between the exact and linear solutions is to look at

the absolute difference between the two solutions. Figures 15 through 19 show

the differences. The ordinate is the log to the base 10 of the deviation in

nautical miles, while the abscissa is the number of orbit revolutions.

Figures 15 and 16 are deviations in x versus time and y versus time,

respectively, for a radial ejection. The z versus time has been left out,

since the out-of-plane component for the linear solution is zero. Generally,

for spread velocities less than 100 ft/sec, the maximum deviation is on the

order of magnitude of 1 nmi after two orbits. Figures 17 and 18 examine the

same scenario, except now, for a tangential (parallel to the velocity vector)

ejection. For spread velocities of less than 100 ft/sec, the deviation is on

the order of magnitude of 10 nmi after two orbits. The deviation in z is left

out for similar reasons as before.
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Figure 19 is the deviation in z versus time for an out-of-plane

ejection. For a spread velocity of 100 ft/sec, the deviation grows to about

0.1 nmi in approximately two orbits.

The comparison of the torus model to the Clohessy-Wiltshire volume

model is shown in Figure 20. Clohessy-Wiltshire has a greater volume,

generally, over the first orbit. The torus model has two more zero points

than the linear model; however, thp two models do have their common zero

points at approximately the same time.

3.4 SUMMARY

For small changes in relative velocities (< 100 ft/sec), the Clohessy-

Wiltshire equations prove to be adequate for at least the first couple of

orbit revolutions. However, as time increases, the equations degrade as the

nonlinear terms, previously neglected, begin to have a larger effect. When

large velocity changes are considered (> 1000 ft/sec), the radial and

tangential position components for orbital plane ejections begin to deteriorate

quickly as time progresses. However, the out-of-plane component of position

for an out-of-plane ejection was quite accurate for both the linear and exact

equations.

When considering large time periods (days), however, one must

necessarily use the exact equations, since the linear equations are good only

for a short time following the ejection.
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4. THE EFFECTS OF PERTURBATIVE FORCES
ON THE DEBRIS CLOUD EVOLUTION

4.1 INTRODUCTION

In previous sections, the volume of a debris cloud following an on-orbit

breakup of a spacecraft assumed an inverse-square gravitational field and

failed to include any additional external forces acting upon the individual

debris particles. In actuality, there are always external forces acting in

addition to higher order harmonic terms in the gravity field. This section

reexamines the effects of one such harmonic term, J2 (earth oblateness

term), and a potentially important external force, atmospheric drag, on the

shape and size of a debris cloud. The approach used is based upon a

simplified, first-order formulation which provides a cursory but timely

estimate of the propagation time for the cloud to cover the entire globe as

well as an early estimate of volume effects used for density calculations.

4.2 BACKGROUND

As shown in Sections 2 and 3, the linearized Clohessy-Wiltshire

equations provide an adequate solution for the relative motion between two

objects in space with low initial relative velocities. However, there exist

solutions to the linearized volume equations that produce a "pinch point" or a

point of zero volume. This point occurs at integer number of revolutions after

the orbital breakup begins. Because of this pinch point, the density of debris

becomes infinite (number of particles divided by the volume) and thus produces

an unacceptable collision hazard. However, since this volume is initially

infinitesimal, there is very little chance of a collision with another

spacecraft.

In the true situation, there will not be an exact regrouping of the

debris. External forces plus variations in the earth's gravity field will

cause the volume to be perturbed, thus relieving the singularity in density at

integer number of revolutions. Therefore, accounting for some of these

perturbations will provide a better understanding of what actually happens to

this debris cloud.
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4.3 ANALYSIS

As shown in Section 2, the dimensionless volume of a debris cloud is

V = - determinant [M] (46)

where

M = [-a21 a 22 a] (47)

0 0 a3 3

a1 =-3e + 4 sin e

a12 = -a2 1 = 2(1 - cos 0)

a2 2 = sin E

a = sin e (48)

where e is the angle swept out by the rotating reference frame with respect

to the inertial frame. The matrix [M] is the state transition matrix relating

relative position to initial velocity.

In this section, the elements of [M] are slightly perturbed by J2 and

atmospheric drag, and the results are compared to those obtained in the

linearized solution.

The first step is to perturb the functions aij. One possible

formulation is

a1 1 =-30 + 4 sin e

a12 = a21 2[1 + fl(t)] - 2 cos 8[R - fl(t)]

a22 = sin e[l - f2(t) + f2(t)/Isin eli

a33= g(t) + Isin e1 (49)
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These functions have initial values of zero and steady-state values of

f 1 (tf) = 

f 2(tf) = 

g(tf) a sin i

f AV

where i is the inclination of the target spacecraft, w is the rate of

increase of 0, and tf is the ending time of the approximation.

Assume a nearly linear relationship for the functions f1 (t), f2 (t),

and g(t), such that

f1(t) = C 1t + C4 (0 - sin 0)

f2(t) = C2t + C5 (0 - sin e)

g(t) = C3t (50)

where the constants Ci, i=1,2,...,5 are to be determined, and depend upon

the orbital elements (altitudes at apogee and perigee, and inclination) of the

debris source.

The functions f1(t) and f2(t) spread the debris out in the radial

direction; they come directly from the spreading due to atmospheric drag and

the rotation of the line of apsides of the individual particle orbits. The

function g(t) is an out-of-orbit plane change, this time due to a shifting in

the right ascension of ascending nodes of the debris particle orbits.

However, the right ascension of ascending nodes rotates about the polar axis

of the earth, and not the normal axis to the orbit.
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4.4 J2 EFFECTS

The constants CI, C2, and C3 are due to the imperfections in the

earth's gravitational field; i.e., the zonal harmonic term J 2 The C I and

C 2 terms relate the shifting in the line of apsides, while the C3 term

relates the shift in the line of nodes of the orbit.

First, take the equation for the shifting of the line of apsides at an

altitude h as

0 9.96399 R 3.5 5 2 deg(i e2))2 (R +h) [2 -2 sinMl mean solar day (51)

This is with respect to an earth-centered, inertial reference frame. Assume

as a center of a rotating reference frame (with respect to the inertial frame)

the position of an object before it breaks up in orbit. After the breakup

occurs, groups of particles will be traveling with a greater w than the

satellite, had the breakup not occurred. Likewise, there are groups of

particles with smaller w values. Statistically, by finding the average00

greater 6 and the average lesser W, one can find a relative shifting in

the line of apsides. For a greater , the semi-major axis decreases. This

probabilistic change (Aa) in the semi-major axis, a, is a function of the

change in velocity as per Eq. (28)

<Aa> = a (Av/v) (52)

where v is the orbital velocity at breakup with respect to an earth-centered

inertial reference frame. The relative shift in the line of apsides for a

circular orbit is

5 .

AK (2 - sin 2(i)] (53)
2

where

K =K+ - K_
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and, converting to appropriate units

= ( R_>_
3 "5  ra-d (4

K+ = 2.01 x 10-6 ( a se (54)

and

K_ = 2.01 x (0- 6  rad (55)
sec

Similarly, for the rotation of the line of nodes, the equation

-9.9639 R 3. 5  deg (56)
(I e 2)2 a)m cs(i) n solar day

relates the change in nodes as a function of orbital elements.

Again, we are interested in a relative rotation in the line of nodes, so

<> = IAK cos(i)I (57)

The time that it takes the line of nodes to shift 1800 is

TO =-- (58)

and the time it takes the line of apsides to shift 180* is

T - (59)
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The constants CI, C2 , and C3 are therefore

C 2
1 T

C
I

2 T

C3  Ta ( )a sin(i) (60)

where sin(i) is called a volume limit factor with limits on the functions as

fl(t) = Cit < I

f2 (t) = C 2 t - I

g(t) = Ct< a sin (61)

4.5 ATMOSPHERIC DRAG

The effects of atmospheric drag affect only the radial and tangential

components of the position. This is an additive effect and is unrelated to

J2 " We can now assume a new expression for the perturbation functions

f (t) and f 2(t). The function g(t) remains unchanged, since this is the

out-of-plane function. As in Eq. (50), assume

fl(t) = C1 t + C4(9 - sin E)

fl(t)

f (t) - (62)
2 2

The constant C4 is now to be determined.
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From Reference 7, the drop in altitude due to atmospheric drag is

Ah = g (0 - sin G) (63)
W/CD A

where

p= gravitational constant

p = atmospheric density

g = acceleration due to gravity at sea level

W = weight of debris particle

CD = drag coefficient

A = cross-sectional area of debris particle

For a group of particles with a certain Av, assuming an isotropic

expansion, half of the particles would move into a higher energy orbit, and

half would move into a lower energy orbit. Therefore, the immediate conse-

quence is that the particles with a lower energy orbit will be affected more

by the atmosphere than those at a higher energy level. Multiplying by a

statistical factor of 0.5 and nondimensional-zinp. Eq. (63) becomes

Ah' - 0.5lig (6 - sin e) (64)

where Ah' is a nondimensional drop in altitude. The factor C4 is the

average over one revolution

2n
1 f 0.5 pg d(65)
4 2r0 (4-v)BC

where BC = W/CD A (ballistic coefficient).

A useful expression for the atmospheric density is (Ref. 8)

p = Keh/c (66)
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where

K = reference density = 4.80711 x 10
- 8 lb/ft 3

h = altitude

c = reference altitude = 12.58 nmi

The altitude function h is dependent upon 0, while everything else is

approximately independent of G. By definition

h = r - R = aN ( - eN cos 0) - R (67)

The values a N and eN are semi-major axis and eccentricity of the new lower

energy orbit, respectively, with

aN= a [1 -(Avv)] (68)

and

e (Av/v) (69)
eN I - (Av/v)

where a is the circular radius of the object orbit that is breaking up.

Assembling the various expressions, Eq. (65) becomes

21

C 1 p5g K f exp{-[aN(l - eN cos 8) - R]/c}dO (70)c -2w ( _)B c  J

Integrating Eq. (70)

3/2 0.pg c 1/2
C4= (!-) ()B [(Av/v)J exp{[R - -N~ e N)]/c} (71)

and, as before,

C 4

5 2
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4.6 RESULTS

Take, for example, the following two cases.

Case 1: Assume that the object breaking up is at an altitude of

200 nmi, inclined at 450 with respect to the equator. Figures 21 and 22 show

the constants C., i = 1,2...5, for an applied Av. Assuming a Av of 100 m/s,1

we note that Figure 23 shows the volume versus time profile with J2 only, drag
only, no perturbations, and drag and J 2 At 9 = 27r, the volume (in non-

dimensional form) is 4.7 x 10- 3 (dimensionalizing, V = 3200 km 3). In this case,

it will take 322 days for the line of apsides to shift 1800, and 5.7 years for

the cloud to envelop the earth.

Case 2: Again, we have a circular orbit with an altitude of 500 nmi,

with an inclination of 45*. Figures 24 and 25 show the constants C., i = i,1

2... 5 for breakup. Figures 26 show the volume versus time profile with J2

only, drag only, no perturbations, and J2 drag. At 0 = 27, the nondimensional

volume is 6.5 x 10- 5 (dimensionally, V = 63 km 3 ) which produces a finite density

at e = 21. For this example, it will take 410 days for the line of apsides to

rotate 1800, and 7.2 years for the cloud to envelop the earth.

4.7 SUMMARY

The addition of atmospheric drag into the volumetric equations spreads

the cloud's shape into a plane at the integer orbit pinch points. Only with

the addition of J2 do we have a spreading out in the out-of-orbit direction,

thus creating a volume at the pinch points. Although the volumes at the pinch

points in the first few revolutions are small, they are not zero and thus yield

a more accurate assessment of the potential collision hazard. Also, as

expected, for a higher altitude orbital breakup, the atmospheric drag has less

of an effect than for a lower orbit breakup.
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5. COMPUTING FRAGMENT DIRECTIONS AND ORBITS AFTER COLLISION

5.1 INTRODUCTION

Section 6 describes a method for determining the masses and velocities

of fragments that result from a hypervelocity collision. The velocities

derived are relative to the center of mass (CM). This section calculates the

center of mass velocity vector and determines the fragments' directions

relative to the center of mass. Both sets of results are then used to deter-

mine the fragments' orbits. An example is used to illustrate the method. The

results are tabularized and graphed.

5.2 METHOD OF ANALYSIS AND EQUATIONS

There are three steps in the methods of analysis to determine the

fragment orbits: (a) to determine the orbit of the center of mass of the two

objects colliding; (b) to calculate the masses, velocities (Section 6), and

directions of the fragments relative to the center of mass; and (c) to input

the above results into an orbit element conversion program to compute orbital

properties of the fragments. Figure 27 summarizes these three points and

illustrates the center of mass orbit of two intersecting orbits.

5.2.1 Coordinates of Center of Mass

To find the coordinates for the center of mass of the two objects, let r

be the position vector of the two objects at intersection, and let v1 and v2 be

their respective velocity vectors (as shown in Fig. 27) such that

r = ri + ryj + rz  (72)

v= vlxi + vlyj + vlzk (73)

v2 = v2xi + V2yj + v2 zk (74)

The conservation of angular momentum is then applied in which the total

angular momentum of the system at the intersection point, 1, is equal to the
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Figure 27. Center of Mass Vector from Two Intersecting Objects
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sum of the angular momenta of the two objects, P1 + P2" The quantity, P, refers

to the total angular momentum as if it were concentrated at the center of mass.

This is precisely what we want, since we are trying to find the velocity of the

center of mass. Using the conservation principle, we get

I + 2 (75)

where
P1 =r x mlv (76)

4 + +
P2 = r x m2 v2  (77)

P = r x MvCM (78)

M = m1 + m 2  (79)

vCM = vx i + v y + v zk (center of mass velocity) (80)

Solving Eq. (75), using the rest of the relations, yields the components

of the center of mass velocity vector

vx = (mlvlx + m2v2x)/M (81)

vy = (mlvly + m2v2y)/M (82)

vz = (m1vlz + m2V2z)/M (83)

Thus, the center of mass velocity is expressed in terms of mass of the

two objects and their velocities.

5.2.2 Fragment Velocity Relative to the Center of Mass

The kinetic energy of the colliding objects and the center of mass are

used to compute the fragment velocities.
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The total kinetic energy of the two objects before collision is given by

KE (before collision) = (mlv2 + m2v2 )/2 (84)

After the collision, the total kinetic energy of the system can be

expressed by the sum of the kinetic energy of the total mass moving with the

velocity of the center of mass and that due to the motions of the individual

particles relative to the center of mass (Ref. 9). The following equation

expresses this as

[~ n 2/

KE (after collision) [(mI + m2 )v M + mii /2 (85)

where

mi = mass of i-th fragment

= velocity magnitude of i-th fragment
relative to the center of mass

n = number of fragments

If the collision is assumed to not conserve kinetic energy, then

Eqs. (84) and (85) can be related in Eq. (86) (canceling the 1/2's)

2 2 2 n .2
mv I + m2v 2 = (mI + m2)vcM + mip i + KELOST (86)

where KELOST = twice the amount of kinetic energy lost in the collision.

The unknowns in Eq. (86) are mi., p. and n. Thus, rearranging Eq. (86)

yields

n 2 2 2 2

Xin. mimi +mv2 2 CM LOST (87)
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As mentioned earlier, Section 6 describes a method for determining the

number of fragments, n, the fragment masses, mi., and velocities, Pi, that

solve Eq. (87).

5.2.3 Determining Fragment Directions

Conservation of momentum is used to determine fragment direction. A

random direction relative to the center of mass was given to the first frag-

ment. The second fragment was given a direction (relative to the center of

mass) opposite the first. In this way, the momentums imparted to the first

two fragments relative to the center of mass cancel. This assumes that these

fragments have the same mass and velocity. The process is repeated until all

fragments have been assigned directions. The directions are chosen randomly

from the uniform directions derived in Appendix B.

5.2.4 Determining Fragment Orbits

After completion of the previous analysis in Sections 5.2 and 6, the

center of mass position and velocity should be known and the fragments should

all have assigned velocities and directions relative to the center of mass.

The velocity of the center of mass and the fragment velocities relative to it

can be vectorially added to obtain the inertial velocity of each of the

fragments. At this point, orbit element conversions are used to convert the

elements from earth centered inertia (ECI) to other coordinate systems in

order to determine the orbital properties of the fragments. In this analysis,

the On-Line Orbital Mechanics (OLOM) program (Ref. 10) was used to perform the

conversions.

5.3 DATA GENERATION

Once the orbit elements of the fragments have been determined, the data

can be presented in various ways. In our analysis we presented data, typical-

ly, in three formats. The first is a table showing the percentage of fragment

perigees above 100 nmi, the percentage between 0 and 100 nmi, and the percen-

tage below the earth's surface. Thus, the table shows how many fragments will

remain in orbit and reenter sometime later, and those that will reenter
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immediately. An example is shown in Table 3. In this example, the colliding

bodies have a mass ratio of 15. The heavier object is in low earth orbit, and

the relative velocity at collision is 23,183 ft/sec. The first three columns

are the result of the analysis in Section 6.

The second way to present data is to plot the fragment apogee and peri-

gee altitudes versus the fragment periods. An example of this plot is shown

in Figure 28. The 0 nmi altitude represents the earth's surface. The figure

resembles two wings that meet at a point. The upper wing shows the apogee

altitudes, and the lower wing shows the perigee altitudes versus the periods.

Thus, two points are plotted for each fragment. Note the correspondence

between the perigees plotted in Figure 28 and the percentages listed in

Table 3. The APL graphics package, EZPLOT (Ref. 11), was used in conjunction

with OLOM to generate Figure 28. It would be possible also to plot any of the

fragment orbital elements.

Notice in Figure 28 that the right side of the upper wing and the left

side of the lower wing are not straight. They have a slight bow in them.

This bow is only noticeable with the high spread velocities. This example

used spread velocities of over 5000 ft/sec. In Figure B-4 of Appendix B,

these parts of the wings appear straight; the spread velocity used for

Appendix B's example is 1000 ft/sec. If the spread velocity is large enough,

the bow appears regardless of whether the fragment spread is from a circular

or an eccentric orbit and regardless of the position within the eccentric

orbit.

The third method of presenting data is to plot footprints that show the

region on the earth over which reentering debris will fall. The ECI coordi-

nates of the reentering fragments are input to the program PECOS (Parametric

Examination of the Cost of Orbit Sustenance, Ref. 12) and propagated until a

specified altitude is reached. PECOS will print out the latitude and longitude

of the fragments at the specified altitude. Any program can be used that can

accurately propagate the orbital elements under the influence of drag. The

latitudes and longitudes are then plotted onto a map using EZPLOT.
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Figure 28. Apogee and Perigee Altitudes of Each Fragment
versus Its Period; MR = 15; NF = 992

Since the concern of our analysis was the extent of the footprint and

not the distribution of fragments within it, it was not necessary to propagate

the elements of all the fragments. In this analysis, only seven fragment

directions (per mass group) that would define the contour of the footprint

(for that particular group) are propagated. All the directions used lie in

the plane defined by the velocity vector of the center of mass, vCM, and the

cross product of the position and velocity vectors, rXvCM (Fig. 29). More

specifically, the directions chosen were in the uprange half of the figure (180

to 3600--the shaded region).
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Figure 30 shows a typical footprint that includes three contours.

There is one contour for each mass group (0.1, 1, and 10 lb). Each contour

was formed by connecting seven "x's." The seven x's are the latitude/

longitude "impact" locations that result from the seven fragment directions

propagated by PECOS. The three contours are centered over the groundtrack of

the orbiting object. The 10-lb and heavier fragments would be contained

within the smallest contour, 1.0-lb and heavier in the middle contour, and

0.1-lb and heavier in the largest contour.

Note that the figure does not show how many of the fragments will

survive reentry (if any) and that the masses listed are the masses before

reentry, not at impact. Thus, even though the curves show regions over which

fragments of various "preentry" masses may impact, no fragments may actually

reach the ground. Further analysis in this area is needed in order to assess

the actual threat on the ground to impacting debris.

5.4 SUMMARY

This section explained the three steps used to determine the orbital

elements of the fragments resulting from two colliding objects. First,

calculate the center of mass velocity vector from equations presented. Then

determine the fragment masses, velocities, and directions relative to the

center of mass. Finally, use the results from the first two steps to

determine the orbit properties of the fragments.

Three methods of presenting the data also were shown: (a) tabular data

showing the percentages of fragments that reenter or stay in orbit, (b) graphs

of the orbital elements that show the distribution, and (c) a footprint

showing the regions on the earth in which fragments would be expected to

impact (if they survive reentry).
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Figure 30. Reentering Debris Footprint for Colliding
Objects with Mass Ratio of 15
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6. DEBRIS GENERATION AT HYPERVELOCITY COLLISION IN SPACE

6.1 INTRODUCTION

Increase in debris as a result of collisions and explosions in space has

been recorded. Some of the collisions and explosions are involuntary and some

are deliberate. The debris can cause damage to other satellites in space.

The number and velocity of fragments generated by collision between two

objects in space depends on the relative velocity of impact; the masses of

colliding objects; and the material properties such as density, elastic limit,

melting point, ultimate stress coefficient, and the impact scenario. For

example, in the case of hypervelocity, catastrophic impact, both objects will

fragment. In some other cases, there will be a crater formed in one object,

whereby the ejected mass will fragment leaving the rest of the object intact.

In the case of oblique impact, a part of the object will shear, leaving the

remaining portion intact. In this section, only the hypervelocity,

catastrophic impact will be discussed.

This section presents a method for determining the number of fragments,

their masses, and spread velocities created as a result of collision between

two objects in space.

An analysis of debris generation at hypervelocity collision in space has

been performed assuming conservation of momentum and energy. A methodology has

been developed to determine the mass of fragments and their spread velocities

about the center of mass. Size of a fragment with a given mass has been

calculated assuming certain shape and density.

6.2 ANALYSIS

When two masses collide at near-hypervelocity or hypervelocity, internal

pressurization develops which, in turn, generates internal shock waves.

Nebolsine, et al. (Ref. 13) have studied the kinetic energy mechanism at

Physical Sciences, Incorporated (PSI). Figure 31 shows the shock wave
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generation at impact. The expressions for pressure, velocity, and impulse of

the shock wave are given below:

P= Pv 2 )(88a)s p (R

V=Vp~3/2

vs =v( (88b)

4 = (88c)

where P is pressure, v is the velocity of shock wave, I is impulse per unit

area, p is density of material, v is relative velocity of impact, d is dia-

meter of projectile, and R is radius of shock wave front which increases with

time. Shock wave-related parameters are shown in Figure 31. For fragmenta-

tion, Is > a ut/a t where at is the speed of sound, t is the thickness of

material, and a is the ultimate stress coefficient.u

TARGET

Vs

PROJECTILE P

R
Vp

SHOCKWAVE FRONT

Figure 31. Shock Wave Propagation

72



Consider a case where two masses m1 and m2 moving at velocities vI and

v2 collide. From the conservation of momentum we get

mv 1 + 2 2 = (I + m 2)v cm (89)ll+ mv 2 (cm

where v is the velocity of the center of mass.cm

Conservation of kinetic energy will yield the following equation:

1 2 1 2 1 2
2 mv 2 2 = 1(m + m2 )v + Q (90)

where Q is the available energy for the spread of fragments created by impact.

The term Q is related to fragment mass and spread velocity in the following

manner:

Q= m .v2 + E' (91)
1

where E' is the loss in energy due to heat and light generated at impact, v.

is the spread velocity of i-th fragment with respect to the center of mass,

and m. is the mass of that fragment. The center of mass is moving with1

velocity vcm; at the same time, fragments are spreading with respect to the

center of mass. For the case when E' = 0, Q (the energy available to spread

the fragments about the center of mass) depends on the relative velocity of

impact and the ratio between the two colliding masses and is given by

Q = F - (KE)reI  (92)

where (KE) = 1/2 V = relative velocity at the time of collision.
rel /2 mrv, vrel=

Fraction F is the ratio between Q and the relative kinetic energy, (KE)rel,

and is related to mass ratio R(R = m2 /m ) as shown in Figure 32 (Ref. 13).

For a given mass ratio, one can obtain F and then use Eq. (92) to determine Q.

Once the value of Q is determined, the problem is to determine fragment mass

and assign the spread velocity to satisfy Eq. (91). This is discussed in the

following sections.
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Figure 32. Inelastic Collison Energy Fraction F

versus Mass Ratio R

6.2.1 Determination of Fragment Number

To determine the number of fragments of a given mass, the equation

obtained by Kessler, et al. (Ref. I) has been used. This equation is

empirical and was obtained on the basis of fragments generated in some test

experiments. This equation is given by

n
N = K(9--) (93)

e

where N is the number of fragments of mass m and greater; M eis the total mass

fragmented after impact, n = -0.75; and K is a constant which depends on the

rigidity of the material. For a rigid material, K = 0.4; for a nonrigid

material, K = 0.8. A rigid material will fragment in pieces with a larger mass,

and a nonrigid material will fragment in pieces with a smaller mass under the

same impulse. For collision between satellites, NASA has determined that K

0.45 is a good value to be used, because there is a fairly good agreement

between predicted and observed results if this value of K is used. Equation

(93) can be used to obtain the number of fragments and their masses generated

by hypervelocity impact and not by explosion.
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Figure 33 has been taken from Reference 1 and is based on the result of

a laboratory experiment. In this experiment, a 237-gm projectile was used to

impact a target of 25 kg mass at a relative velocity of 3.3 km/sec. The

cumulative number of fragments versus the diameter of the fragment is shown in

this plot.

The fragments generated by explosion have a different distribution as a

function of size than the fragments generated by collision. The following

equations can be used to determine the number of fragments generated by

explosion or breakup*:

N = 1.71 x 10- 4 M exp(-0.02056 m / 2 ) for m > 1936 gm (94a)e

and

N = 8.69 x 10- 4 M exp(-0.05756 mI1/ 2 ) for m < 1936 gm (94b)e_

where MT is the mass of target in grams, M = the mass of fragment in grams,

and N is the cumulative number of fragments with mass greater than M grams.

10 7

SHOT No. 5286
, lo (velocity = 3.3 km/sec)co

COLLISION
DISTRIBUTION

EXPLOSION

DISTRIBUTION"

10-

10- 2  10- 1  1 10 102

DIAMETER (cm)

Figure 33. Number of Fragments Produced from
237-gm Projectile

*See Ref. 18.

75



Size of the fragment will depend on the mass density. For satellite
3

structures, the density could vary between 0.1 to 5 gm/cm 3 . It can be

assumed that the small-sized fragments (0.1 cm diameter and smaller) will be

spherical in shape; medium-sized fragments (between 0.1 and 20 cm diameter)

will be cubical in shape; and large-sized fragments (20 cm and larger) will

have a disk shape. The fragment mass density distribution will vary, depending

on the colliding objects.

6.2.2 Determination of Fragment Spread Velocity

To obtain a relationship between a smaller mass of fragment and its

velocity to a larger mass ot fragment and its velocity, it has been assumed

that the kinetic energies are equally imparted such that

1 2 1 22mlvI  - 2 m2v2  (95a)

or

v 2 /m, ) /2
- (95b)

where mI and m2 are arbitrary debris particles with velocities of vI and v29

respectively. This assumption is based on the consideration that when a shock

wave travels, it applies equal pressure along the front at a given time. It

causes the material to break up in unequal sizes but imparts equal kinetic

energy. However, this assumption is not valid for smaller-sized fragments

(0.1 cm and smaller), because as the area on which pressure is applied by the

shockwave becomes very small, the effectiveness of the shockwave is reduced.

For large-sized fragments, this assumption is in agreement with the test

results performed by PSI and produced by NASA (Fig. 34). Three curves are

shown in this plot. One of them is for the nominal case, and the other two

curves are for extreme cases showing the upper and lower limits of the spread

velocities of the fragments. In general, the nominal behavior can be assumed.
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Figure 34. Model: On-Orbit Debris Total Velocity for
Body-to-Body Impact
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it is also important to account for the total mass involved before and after

the collision. This methodology can be used to determine the number of

fragments, their masses, and corresponding velocities. Size is determined

using mass density criterion for a fragment of given mass and shape.

6.3 SUMMARY

The methodology presented in this analysis can be used in determining

the number of fragments, their masses, and corresponding spread velocities as

well as sizes. This, in turn, allows a better estimate of the collision

probability posed by these debris particles.

6.4 PROGRAM IMPACT

The algorithms presented in Sections 4, 5, and 6 have been coded into a

user-friendly, menu-driven IBM PC software package, entitled IMPACT. This pro-

gram guides the user through the breakup phase of several different scenarios.

It allows the user to specify such things as energy dissipated in a breakup

(percent of kinetic energy converted to heat and light), initial conditions in

several forms of orbital elements, and masses of objects breaking up. Through-

out the duration of the execution, the user is allowed to view tabular and

graphical outputs, such as the relationships between numbers of particles,

sizes, spread velocities, and particle orbital parameters, which are very

useful to the analyst. The resulting output of this program is a properly

formatted input file for the program DEBRIS (to be discussed in Section 8).

The utility of this software is that numerous calculations, previously done on

an ad hoc basis, are combined into an integrated, easy to use, software

package.
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7. SPACE VEHICLE BREAKUP DYNAMICS IN HYPERVELOCITY

COLLISION--A KINEMATIC MODEL

Development of a hazard model for on-orbit breakups must necessarily be

approached with great discipline and care, since abstractness of the results

and difficulty in gathering physical evidence make it likely that very gross

errors in the model may pass undetected, even after the event. This is

particularly true in the case of near-term hazards, i.e., those extant during

the first few hours and days after the breakup. The transient hazards in

localized regions (near the "pinch points") typically run up to several orders

of magnitude above the long-term average. Furthermore, their magnitude, loca-

tion, and duration are highly sensitive to the initial characterization of the

breakup and the number and distribution of initial fragment state vectors

resulting from the breakup.

Sections 5 and 6 provide, in principle, a representation of a very

simple breakup model originally developed by NASA which, until now, has been

used extensively in the orbital debris community. (We shall therefore refer

to this subsequently as the "NASA" model, although this is an Aerospace inter-

pretation.) This model is based on an assumption that collision results are

adequately represented by a spherically symmetric distribution of fragment

velocities about the system center of mass velocity of the two colliding

objects. An inverse relation is assumed to exist (Fig. 34) between fragment

size and velocity relative to the center of mass. However, experimental obser-

vations have exhibited, in general, a more complex structure to the fragment

cloud formation than this representation is able to reflect. Furthermore, in

many cases, large fragments would have to survive enormous accelerations to

arrive at velocities near the center of mass, a behavior which is not supported

in theory or observation.

These differences became important in the characterization of hyper-

velocity collisions of extended bodies, such as spacecraft, and the calculation

of the resultant hazards. While these differences are largely washed out in

the very long-term projections of fragment populations, overlooking details of

the initial conditions of breakup can lead to significant understatement and/or
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mislocation of peak fragment densities and resultant hazards in the near term.

In this section, we present a new collision model, referred to as the

Aerospace kinematic model, which provides an improved characterization of such

collisions. We further explore results of incorporating the kinematic model

in a cohesive hazard model for such events and contrast these with results

obtained using the older model.

7.1 BACKGROUND

Hypervelocity collisions of space vehicles present a problem whose

study has been limited by the difficulty in accurately modeling such events.

Elaborate hydrocode models are required for direct analysis of collisions

between even the simplest of objects; the results generally have large uncer-

tainties. When the colliding objects are extended and complex in structure

and mass properties, such models tend to become unmanageable. However, if one

is interested only in the far-field effects of the collision, some insight may

be obtained by examining the collision dynamics qualitatively to identify

degrees of freedom and gross constraints on the mechanical properties of the

collision. The problem is thereby simplified to one of managing the system's

available momentum, energy, and mass within identifiable constraints. One can

then evaluate sensitivity of the post-collision states to variation of para-

meters associated with the assumed degrees of freedom. To accomplish this,

a transfer function must be defined relating the pre- and post-collision states

in terms of these parameters as constrained by the conservation laws. In this

way, the range of possible outcomes of an event can be examined without the

necessity of modeling each condition individually, and parametric values can be

sampled randomly for statistical analysis of the system. If the model param-

eters have been carefully chosen to have clear physical significance, then

improved knowledge of the collision dynamics can easily be incorporated in the

form of revised limits.

Consider the general properties of a collision depicted schematically

in Figure 35. The volume of the larger object (target) is divided into two

regions, shown in simplified cross section. The central region (unshaded) is

the collision volume; i.e., the volume of material which participates directly
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in the collision. The shaded region is the surrounding or noninvolved target

volume. At initial contact, a set of hemispherical shock waves is generated

over the collision interface, radiating in all directions from the locus of

contact points. As long as collision velocities exceed the elastic wave

propagation velocity in the medium, the advancing material overtakes the shock

front ahead of it, and the materials of both objects are subjected to intense

pressures at their interface. The local collision phenomena at this point are

exceedingly complex and are dependent on the material properties, structure,

and dynamics involved. However, certain gross properties seem to be common to

all such collisions, strongly influencing the far-field distribution of

resultant fragments. Local and near-field phenomena are then important only

insofar as they are capable of shaping the far-field results.

SURROUNDING
VOLUME

COLLISION
VOLUME

Figure 35. Schematic Depiction of a Collision

The material at the interface behaves as a fluid under pressure; this

fluidity has the effect of disassociating the collision volume and the sur-

rounding material of the larger object. Nearly all of the momentum transfer

is confined to the collision volume, the material directly in the path of the

expanding collision front, where the collision is totally inelastic and the
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two objects combine to behave as a single mass. Energy is transferred to the

noninvolved volume (i.e., the material not directly in the path of the colli-

sion) in a secondary interaction that involves shock waves, explosive forces,

multiple secondary collisions, and shear forces in a transition region between

the two zones.

This process continues until the collision mass exits the larger

object, at which point the internal energy of the collision is released in a

radial expansion of the now unconfined material in finely divided fragments in

the solid, liquid, and gaseous states. The noninvolved volume experiences a

lower intensity, explosive breakup into fragments of various sizes, which are

accelerated radially from its center of mass and the collision axis by the

fraction of collision energy transferred to it. This fraction increases with

the ratio of target depth to projectile dimensions along the collision axis.

If this ratio is small, the target is fully penetrated, and only a small frac-

tion of the collision energy goes into explosive breakup of the surrounding

target volume.

With increasing penetration depth, momentum transfer reduces the

relative velocity of the collision front. If the depth ratio is sufficiently

large, the collision velocity falls below the elastic wave velocity, and the

collision is fully absorbed by the target. For much larger targets, ejection

of material from the collision takes the form of cratering, with the collision

mass ejected back along the negative collision axis and a net elastic reaction

between the target and ejecta.

Empirical demonstration of these properties may be found in a great

variety of test cases. Figure 36 clearly shows (a) the differentiation of the

collision and surrounding target volumes in a small-scale, hypervelocity

penetration; and (b) their contrasting breakup characteristics (that of the

collision volume being far more energetic). Figure 37 shows an example from

the opposite end of the scale, a head-on collision between a full-sized

aircraft and missile observed at White Sands Missile Range in 1978. The
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Figure 36. Flash X-Ray Series, 1-g Titanium Disc (impacting at
-4.6 km/sec on 0.100-in. 2014-T6 aluminum target plate)*

Figure. 37. Aircraft-Missile Test, 1978 (closing velocity 2 km/sec)

*Photograph from Ref. 17
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relative velocity of the collision was about 2 km/sec, and the aircraft/missile

mass ratio was about 30:1. The missile was inert at the time of the collision,

since it had exhausted its fuel and carried no warhead. While a great many

subscale hypervelocity collision tests have been conducted and extensively

reported in the literature, empirical data on large-scale collisions are very

meager. The best-documented examples are ground tests conducted at Arnold

Engineering Development Center by PSI (Ref. 13); the ASAT intercept test (Ref.

14); a HOE flight test (Ref. 15); and the Delta-180 flight test (Ref. 16).

Because of instrumentation limitations, each of these provided only very

limited data with respect to fragment distribution.

Qualitative features common to these examples, and clearly evident in

Figures 36 and 37, include a distribution of fragment sizes and velocity

components along the collision axis (relative velocity vector) which is very

nonsymmetric and dissimilar to the distribution of normal components; the

components exhibit some degree of rough cylindrical symmetry about the colli-

sion axis. The largest fragments continue close to the trajectory of their

parent object (as one would expect, since the fact that they remain intact

indicates these are the least disturbed by the collision forces). The frag-

ments basically are organized into two groups: a rapidly expanding radial

distribution of large numbers of finely divided fragments about the centroid

velocity of the collision mass, and a less energetic expansion of smaller

numbers of larger fragments about a centroid close to the target velocity.

This suggests a collision model which produces a bimodal fragment distribution

incorporating these features and symmetries.

7.2 KINEMATIC MODEL

In an inertial reference frame, two objects of mass MI and M2

approach their joint center of mass at velocities V1 and V2, respectively, as

illustrated in Figure 38. It is convenient to describe the motion of the

system of particles relative to the center of mass (CM) of the system.
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Figure 38. Incident and Resultant Geometries
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Taking advantage of symmetry, the CM coordinate system is chosen with one
4 + + +

axis oriented along the relative velocity vector, Vre I = V1 - V 2 . Let U be the

velocity of M and V that of M2 in the transformed system. Then

+ M2 +
U - -V UV (6M1 + M2 Rel Rel (96)

+ -M I  +
V - -V VV (7V I + M2 Rel Rel

In CM coordinates, the total linear momentum of the system is zero

i 1= X miV MU + MV = 0 (98)
i i 2

and the total system kinetic energy is
i I +i2 =I M2 V)

KESy s = 2 mi  IV = 2 (MIU 2 + M2V
2) (99)

Since the coordinate system is inertial, all velocities prior to and following

the collision are constants. Accelerations during the collision are assumed

to be instantaneous.

Immediately after the collision, the system is described as consisting

of two translating, nonrotating, uniformly expanding spheres, each comprising

a constant, continuous, undifferentiated distribution of mass in velocity

space. These spheres represent the respective mass distributions of the

noninvolved target volume and the collision volume.

Let the quantities (M{, U', U,) and (Mi, V', v) identify the mass

centroid translational velocity and surface radial expansion rate (spread

velocity) of each of the two resultant spheres in the CM system (Fig. 38c).*

Application of the conservation laws provides the following constraints.

*In this section, the barred notation (u, v, r) is used to denote a specified
value (e.g., extreme or mean) of a scalar quantity, rather than a vector.
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Conservation of mass:

M' +M =M I +M 2  (100)

Conservation of linear momentum:

4 4

Mi U' + M2 V, = 0 (101)

Conservation of energy:

I (MIU2 + MV) = MiU,2 + I1M'V,2
2 1 2 21 22

+ 2J~ p1 (u -u) du

1 +
+ fy P2(V * V)2d v + Qloss (102)
2 p2 v v)osvs

In Eq. (102), U and v are velocities of the volume elements d 3u and
3 + +d v relative to the sphere centroids U' and V', respectively. The pI(U) and

p2 (v) are mass densities of each sphere as a function of velocity relative

to the respective sphere centroids, while Qloss accounts for kinetic energy

dissipated in the collision, i.e., converted to other forms (heat, light,

etc.). Thus, the first two terms on the right represent the translational

kinetic energy (KE' tran s ) of the sphere centroids, and the second two terms

represent the respective kinetic energies of spread about the sphere centroids

(KE'spread):

KEsys = KE'trans + KE'spread + Qloss (103)

Definition of pl(U) and P2(v) presents some difficulty, since no

experiments have been conducted which measure distribution of material density

in an expanding debris cloud. Some experiments (e.g., Ref. 13) report observa-

tions of material distributed throughout the expanding cloud volume, but with

no quantitative measurements that would lead to any con lusions as to the

specific characteristics of this distribution. For the present, therefore, we
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shall assume a uniform statistical distribution of mass density over expansion

velocity in the process of cloud formation. This assumption is unlikely to

result in drastic errors, even if the "correct" distribution should prove to

be different.

P1 (u) = 3 M{/41rlI = p1  (104)

P2 (V ) = 3 Mj/41JVlJ P2 (105)

Conservation of angular momentum dictates that the spheres be

nonrotating, and KE'spread may be rewritten

KE'= 2r u 4d 21r P2 v 4dv
spread f

KE~pread = 2lr PlU 4du + 2 fpd

0

3 2 3 2i0 Mu +- M v (106)

Then the system energy is

1 2 2 3 1 (V,2 2) + 2 + ) + Q
2 (M1 U+M2 V 2 1 5 u 5~( + v) ls 17

7.3 TRANSFER FUNCTIONS

We now define a system of transfer functions expressing the post-

collision state (M{, M , U',V', u, v) in terms of the precollision state (MI,

M2, U, V) and a set of independent parameters governing the system degrees of

freedom. Assume that MI is the target mass and M2 is the projectile mass.

Define a parameter y as the fraction of M directly involved in the colli-

sion (0 < y < 1). The mass of the noninvolved target volume is

M1 = (I - y)M1  (108)

Using Eq. (100), the mass of the collision volume is then

M2 = M2 + Y M1 (109)
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Combining Eqs. (108) and (109) with Eq. (101) places upper limits on magni-

tudes of the resultant centroid translational velocities in the CM system

4 (I - y) M2  (l)
- M2 + y M1 1v1

These upper limits are achieved if, in the collision, no translational kinetic

energy is converted to kinetic energy of expansion.

Now, define a momentum transfer parameter c such that I - c is the

fractional part of positive and negative linear momentum components exchanged

in the conversion of translational kinetic energy to kinetic energy of expan-

sion (0 < c < I - y)- Then

ll = cl4{I/(l - y) = Aji I (112)

4,1 = C14I/[1 - Y(MI/M 2 )] = BIUI (113)

with A = c/(l - y) and B = c/[i + Y(M1/M2 )].

The conversion of translational kinetic energy to kinetic energy of

expansion must be apportioned between the two resultant masses. To retain

maximum freedom in the apportionment, two more parameters, a and $, are intro-

duced. These parameters govern the kinetic energies of expansion of the

resultant masses Mi and M , respectively. Combining Eqs. (108) through (113)

with Eq. (107) then gives the following expressions for the spread velocities

u and v, respectively, of M and M

u = ct(l - A)IUl (114)

v = R(1 - B)IVI (115)
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where

2 < A - M + M -C (MB + M A) B) 2 (116)

M 2(l - A)2  R 1 L 2 1 2  B I

2 M(l B B)2I - [MI + M2  C(MIB + M2A) - A) 2 M2a
2  (117)

In Eqs. (116) and (117), the equality holds when mechanical energy is

fully conserved, i.e., when Qloss = 0 in Eq. (107). In this case, c and

R clearly are not independent; the value of one completely determines the

value of the other. This is true for any fixed value of Qloss*

Further definition of the new parameters a and R is now obtained by

accounting for Qloss and then ascribing a balance to o and R, which are

mutually dependent.

Considering Eq. (103), a new parameter n is defined as the fraction

of energy theoretically available to KE'spread which is actually delivered

to K'spread (i.e., which is not absorbed by Qloss ) . From Eq. (103)

KE'
Qloss spread (118)

Ksys - KEtrans KEsys - KEtrans

Combining this with Eqs. (106), (114), and (115)

KE' --prIa x (1 - A)2 U2 + M, a2 (I - B)2 V2
spread 10 LI

= n(K sys - KItrans (119)

Thus, Qloss is accounted for in simultaneously scaling a and a by a factor
1/2
S.Clearly, n always has a value between 0 and 1. Equation (116) can

be rewritten as an equality

2 = A M + M2- B+ M2A) I a) 2

M2(_ A)2  B2 )]
(120)
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with

)22 < 5) [M + M2 - (MIB + M2 A)] (121)

- M I(I - B)2  1

Finally, the values of the expansion parameters a and R must be

balanced. It has been assumed throughout that the incident bodies are inert,

containing no significant energy sources such as explosives or fuel. (Even if

such sources are present, they may well be negligible in comparison to the col-

lision energy.) In this idealized system, then, all of the energy of expansion

(KE' spread) for both the collision volume (M) and surrounding volume (Mj) must

originate in the collision volume. A proportion of this energy is transferred

to the surrounding volume during the collision to account for its expansion,

while the remainder accounts for expansion of the collision volume. (This is

not intended as a discussion of the local mechanics of interaction between the

collision volume and surrounding target volume. Rather, it is a way to describe

the net effects of the interaction significant to the resultant far-field dis-

tribution of materials.) If no energy is transferred, o = 0 and is maximized;

likewise for u and v, respectively.

Another parameter, X, is now defined as the fraction of KE'spread trans-

ferred to M{ (0 < X < 1). Then the inequality (121) is replaced by an equality

S_ 5n(l_-_X)B
2 I(I -B)2  [M1 + M2 - E (M B + M A)] (122)

3eM 1(1 - )2 1 21 2

Note that q and X now have effectively supplanted and 1 as independent

variable parameters.

Equations (108), (109), (112) through (115), (120), and (122) form

a system of transfer functions which completely define the post-collision state

(Mi, M , U', V', u, v) in terms of the precollision state (M., M2, U, V) and

four independent parameters (y, C, x, r). These parameters form a simple

91



expression of the system degrees of freedom in terms wherein physical signifi-

cance is readily grasped:

0 < y < 1 Mass transfer

0 < C < 1- y Momentum transfer

0 < X < 1 Energy transfer

0 < n < I Energy dissipation

The cloud centroid velocities in the original inertial reference frame

are then given by

4' '^ 4c ^ (l~ 22

V = U V + V U Vre +(M + M )/(M + M (123)
1 1 M2l2 /M I  M2 ) (123)

4' I- 4 9. +
V =VV + =vV +(MIV +MV)/(M +M (124)
2  reI  cm rel 11 22 1 2

Assignment of values to the parameters (y, c, X, q) for a particular

problem is dependent upon the specific geometries and materials involved and

the user's assumptions concerning the physics of the collision. Because the

physics of collisions of complex bodies are poorly understood and difficult to

predict, the best approach might take the form of a statistical or sensitivity

analysis, to which the system described here lends itself particularly well.

Application of this model is not restricted to impacts of a small

projectile in a large target; it is adaptable to other configurations. For

example, a glancing or partial impact of two bodies of comparable dimensions

may be handled by executing twice, allowing each body in turn to act as a

target, while the involved portion of the other body acts as a projectile.

7.4 CALCULATION OF STATE VECTORS

The transition from a continuous mass distribution to discrete fragment

states is accomplished in a series of steps. First, the expanding spheres are

quantized into a large number of cells of equal mass. These are assigned
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velocity vectors pseudorandomly such that the uniform, continuous distribution

of mass over velocity is replaced by identical, discrete masses distributed

randomly with uniform probability.

Consider a uniform sphere of radius R divided into N cells of equal

volume. The volume of each cell is

W = 4R 3/3N (125)

Assume that the cells are subdivisions of M shells of outer radius

r (m = 1, 2, ... , M; r = 0; rM = R) each containing n cells. Thenm om

W = 41(r - r 3-)/3n (126)
m rn-i m

r n m R 3 1/3 (127)rm  N - rm_ I

The weighted mean radius of a shell of outer radius r is then

3m

r ( ~(3 3ri) 1/3(18rm 2 r m + r m-l (128)

For the m-th shell, choose nm sets of direction cosines (ai . b i , c. ) as
m m m

uniformly distributed random numbers between -1 and 1, and their opposites

(-ai , -bi , -c i ), for im = 1, 2, ..., nm/2 . The uniform sphere is then
m m m

approximated by the N cells of volume W having position vectors

SrM(a i i, b. j, c i k).
m m m

A cell mass mi is selected; the sphere representing the noninvolved

volume is then approximated by setting N = M,'/m, R = u. For the collision

volume, set N = M2 '/nm, R = V. This method absolutely conserves momentum and

approximately maintains the mass distribution. Mass distribution and energy

content cannot be maintained simultaneously in converting from a continuous to
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a discrete and finite distribution of masses; therefore, this process necessi-

tates a small loss of system energy. This generally may be accounted for by

incorporation in Qloss'

Next, a list of discrete fragment masses is generated for each volume

(i.e., the collision volume and the noninvolved volume). The approach employed

here is based on relationships documented ir. Reference 18. However, in incor-

porating this approach in the kinematic model, we have further developed and

extended these relationships to form a self-consistent method of calculating a

fragment list for any hypervelocity collision. In the process, potential

inconsistencies observed in previous applications of these relationships are

eliminated.

Reference 18 identifies differing relationships for fragment mass

distributions resulting from explosive breakup and collision fragmentation as

follows.

Explosion Fragments:

N (m > mo ) = KIM exp (-K 2mol/2) (129)

where N is the cumulative number of fragments having mass larger than m 0 , and
M is the total mass of the fragmented object. The constants KI and K2 are

defined differently for the largest fragments and those in a smaller size range,

based on empirical data.

mo > 1936 gm: K1 = 1.71 x 10- 4 , K2 = 0.02056

m0 < 1936 gm: K 1 = 8.69 x 10- 4 , K 2 = 0.05756

Collision Fragments:

(m > ) = K(M e/mo )p  (130)

where K and p are constants defined empirically as K = 0.4478, p = 0.7496.
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Here, M is the "ejected mass," i.e., the mass which would be excavated frome
the target in a cratering impact if the target were very much larger than the

projectile striking it, defined as

M = V2m (131)e p

where m is the projectile mass, and V is the relative velocity magnitude atP

impact in Km/s.

As stated earlier, some inconsistencies have been found in past applica-

tions of Eqs. (127) through (129) to hypervelocity collision problems. Ref-

erence 19 notes that the larger fragments of a collision event are distributed

per Eq. (129), while the smaller fragments are distributed per Eq. (130), so

that the total distribution is a combination of the two. However, no rationale

is given as to how the two distributions should be combined. Also problematic

is the fact that unless the target has at least V 2 times the mass of the

projectile, Eqs. (130) and (131) produce more than the available mass in

fragments. Reference 18 circumvents this by stating that the target mass must

be greater than 10 x M , but Reference 19 ignores this condition, applying the

distribution to a breakup where the target and projectile are of comparable

mass. Our integration of these observations with the kinematic breakup model

incorporates a proposed resolution of these inconsistencies.

In the kinematic model, the low-intensity explosive breakup Eq. (129)

is applied to the noninvolved target mass Mi. To generate a fragment list, a

minimal fragment size m is identified, and the total number of fragments in

a range between m. and m. is identified as follows:1 +

n(m. < m < mi I) Mexp(- Kil/ml2) - exp[- K1(i + 1)I/2m 1/2

= n (mP (132)

where m. = i mo; m: = (2i + l)m /2. A list is generated with M = M' using
0 1 0 i

each set of constants (K2, K2). Fragments larger than 1936 gm are kept from
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the (m > 1936 gm) list, and fragments from the (m < 1936 gm) list are kept

from 1936 gm downward until I (m < 1936 gm) = Mi - 2 (m > 1936 gm). The two

lists are then combined.

The collision fragment distribution Eq. (130) is similarly applied to

the collision mass Mi. A list is generated by

n(mj) = K(VelM2 /mo)p [i-p -(i + I)-p] (133)

for very small m 0 . Then fragment masses are accumulated from i = 0 up to

i = I such that

I
m! i M (134)i=0 2

and the remainder are discarded. This eliminates the problem posed by Eq. (131)

when M = V2  M > M + M
e Rel 2 1 2

Note that Eq. (131) is dimensionally incorrect. It is an empirically

derived relationship which introduces the effect of collision energy variation

into the resultant fragment mass distribution. Without the V2 factor,

Eq. (130) would produce the same fragment distribution for any projectile/

target combination, regardless of the kinetic energy of impact. The interpre-

tation employed in the kinematic model preserves the effect of increased

collision energy resulting in a breakup into larger numbers of smaller-sized

fragments.

The basic cells must be no larger than the smallest fragment of interest

from the fragment list. Combinations of cells are now accumulated to produce

fragments approximating the fragment masses on the fragment list. This is

accomplished by a random selection process which preserves the expected

inverse relationships between fragment mass and velocity relative to the inci-

dent velocity of the body from which the fragment originates. Each fragment

on the fragment list thereby is assigned a velocity which is the vector sum of

the velocities of its component cells.
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7.5 FRAGMENT DISTRIBUTION

As fragment size decreases, the numbers increase geometrically, so that

tracking the individual state vectors of fragments becomes very impractical

when one is interested in those of very small size. Furthermore, in order to

utilize the results for statistical analysis, it is necessary to identify a

statistical distribution n(v,d), i.e., fragment number density as a function of

fragment velocity v and size d. Although the overall fragment distribution is

not (in general) spherically symmetric, often it can be broken down into com-

ponents which can be treated as spherically symmetric about their own centroids.

Then the vector velocity v caa Le replaced by a velocity magnitude v = I I

relative to the appropriate centroid, so that the distribution is simplified to

a function n(v,d) of two rather than four variables. The overall fragment

distribution can then be constructed by the principle of superposition of the

component distributions.

The output of the kinematic model is a distribution of number versus size

n (d) of all fragments above the minimal size of interest, individual frag-

ment velocities down to the smallest size which is computationally manageable,

and the centroid velocities (O', -') and surface radial expansion rates (u, v)

for each of two spherical fragment distributions. The larger fragment veloc-
+

ities can be analyzed to obtain their statistical distribution nv (v, d); but

this distribution must be inferred for the small fragments, for which only the

upperbound velocities (u, v) are given. Once a functional form n v(v,di ) is

identified for each size range d. + Ad, the fragments of each size category

within a velocity range (vl, v 2) can be enumerated:

nd(d i ± Ad) = nv(v,di)dv (135)
Vl

Figure 39 illustrates an example of a fragment distribution generated

by the kinematic model. Velocities are spherically symmetric about the cen-

troid of expansion. A simple three-dimensional approximation of the distribu-

tion of fragments larger than 1 mm is obtained by superposition of three
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isotropically distributed spheres of particles in velocity space having the

following characteristics:

Radius No. of Fragments

V1  n

V2 n2-n

V3  n3 -n 2

200V n/e ni (v, do = I mm)

1000V2 vjoflv (v, di) dv
800 rn/sec i 0

00FRAGMENTS / v,=

0.1m 1mm I1MICm 10 cm I M
d

Figure 39. Fragment Distribution
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7.6 EFFECT OF SECONDARY COLLISIONS

So far, it has been assumed that the collision and breakup occur instan-

taneously, and that the collision fragments emanate radially from a point

source. In reality, the colliding bodies have finite dimensions, and the

collision occurs over a finite time interval. While these properties can be

ignored in describing the general motion of the resultant system of fragments,

they do significantly influence the detailed distribution of fragments within

the system. This is due to secondary interactions among the different com-

ponents of the system very early (on the order of milliseconds) after the

collision, when the dimensions of the colliding bodies are still significant

compared to the distances traveled by the fragments.

Of particular importance is the physical observation that the larger

fragments are generated external to the volume of the direct colliding

masses. If the spread velocity of the fragments emanating from the hyper-

velocity collision !olume exceed the relative velocity of the centroids of the

collision and explosive breakup volumes, some fraction of the hypervelocity

collision fragments will overtake and undergo secondary collisions with the

explosive fragments. Assuming a fair degree of inelasticity in these secondary

interactions, one can expect the collision fragments to give up much of their

kinetic energy (thereby lowering their velocities) relative to the generally

larger and much more massive explosive fragments. This interaction also will

impart momentum to the explosive fragments in directions radial to the

collision centroid, but the large total mass ratio of the explosive fragments

to the involved collision fragments results only in a small net velocity

change to the larger fragments.

Physical evidence of this kind of interaction is found in an unreported

observation from the PSI ground tests. In tests that had full penetration of

the target, resulting in a collision centroid in positive relative motion along

the collision axis from the target body, it was observed that the explosive

breakup fragments from the noninvolved portion of the target body received a
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net momentum component along the negative collision axis (in the direction

from which the projectile had come), and large numbers of collision fragments

were found in and around the larger fragments. While no attempt was made to

quantify these observations, this negative component in the motion of the

large target fragments is difficult to explain except by secondary momentum

transfer from the spreading collision fragments.

As a result of such a secondary interaction, it may be expected that

the distribution of the involved fraction of the collision fragments will be

concentrated in the region of the explosive fragments, increasing the overall

fragment density in that region. Calculation of this resultant distribution

can be separated into two component problems: calculation of the fraction of

collision fragments involved, and calculation of the resultant changes in

individual fragment momenta. In both cases, exact solution would represent a

very complex problem in statistical mechanics. Since precision and accuracy

of results is no better for such a problem than that of the input information

(fragment numbers, sizes, shapes, velocities, etc.), which in this case can

only be grossly estimated, no such analysis is warranted or attempted here. A

first approximation is arrived at by much simpler methods.

Suppose the collision phase of a breakup is completed at time t = 0

such that the collision fragments are uniformly distributed within a spherical

volume whose surface is expanding uniformly at radial velocity of constant

magnitude R. At t = 0 the surface radius is R . Assume also that a body
having apparent cross-sectional area A (as seen from the sphere centroid) is

initially at distance R from the sphere center and moving radially at constant
0

speed V < R relative to the sphere centroid. Then, at any time after t = 0,

the flux of particles through area S (i.e., colliding with the external body

per unit time) is

(t) = p(t) S AV(t) (136)

where p(t) is the number density collision fragments of per unit volume of

the sphere, and AV(t) is the velocity differential between the external body
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and fragments at a radius R + Vt from the sphere centroid. If N is the0
total number of collision fragments

pt 4,(R + it)3 (137)
0

R + Vt
V(t) R 0 + - V (138)

The fraction of collision fragments involved in secondary collisions with the

external body after t = 0 is then given by

q I f (t)dt
0

3 { s +t [ -: v dti 3  "
041r (R°0 + At R0+ RT

S i V (V < A) (139)

41R 2  \ A/

This assumes that S is constant. Further levels of detail (e.g., time varia-

tion of S, oblique orientation of surfaces, perpendicular component of initial

displacement) are second-order considerations which do not greatly alter the

result, except in the case where V is close to (or exceeds) R; this would lead

to a unique mathematical formulation for each scenario and geometric config-

uration studied.

The form of the scattering function likewise is unknown, being dependent

on a great number of factors such as size, shape, composition, and orientation

of the scattering (large) fragments. Elasticity of the scattering should be a

function of the scattering angle; scattering near 180* from the direction of

incidence is highly inelastic, while scattering at small angles may be highly

elastic. From a classical scattering theory, if the scattering is treated as
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isotropic on the average, then a crude estimate of the resultant velocity

distribution can be obtained. If it is assumed that scattering at angles

between 1000 and 1800 is essentially inelastic, the fraction of incident

particles scattered in this range is

If 800

1i00 sin 0 d e z 0.4 (140)
1 000

Thus, 40% of the scattered particles will give up all momentum relative

to the scattering fragments, resulting in their capture within the velocity

region of the large fragments. The remainder are assumed to be distributed at

relative velocities out to R - V from the centroid of the scatterers.

As an example, Figure 40 illustrates the incident and resultant frag-

ment velocities (as seen from above) from a hypothetical glancing collision

between two orbiting bodies labeled A and B, whose orbits are mutually inclined

at 20° . The bodies are assumed to be generally cylindrical, of similar dimen-

sions, but with a mass ratio M A/M B = 5/3. The collision is assumed to occur

with the body axes oriented parallel to the relative velocity vector and

involve yA = YB = 1/3 the mass of each body. Figure 41 details the relative

positions of the collision fragments and those of the lower intensity explo-

sive breakup of the noninvolved portion of object A during the first second

after the collision. If, in Eq. (139)

R I m
0

= 1.7 x 10 3 m/s

V = 103 m/s

S = 3m

then the fraction of collision fragments intercepted by A is qA 1 10%. From

Eq. (140), about 4% of the total might be distributed within the velocity

regime of the large fragments. The remaining 6% is estimated to lie within

approximately 500 km/s of the centroid of the large fragments.
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Figure 41. Early Evolution of Debris Distribution
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Figure 41. Early Evolution of Debris Distribution (Continued)
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Clearly, in this scenario, Object B represents a case where V R and

higher-order effects would dominate.

7.7 COMPARISON OF RESULTS WITH OTHER MODELS

The kinematic model has been employed to provide the hazard analysis

predictions on two experiments to date involving actual spacecraft collisions:

an ASAT test conducted in September 1985 and the Delta 180 test in September

1986. In both cases, analysis of the results showed very good agreement with

the kinematic model predictions (Refs. 14, 16, 20, and 21).

In contrasting these results with predictions based on the "NASA" model,

some important differences are observed. In Section 2, Tables 1 and 2 are two

predictions of the results of the same collision. Table I is based on the

older "NASA" model, while Table 2 was generated by the kinematic model and

reflects Figure 39, neglecting fragments which will not survive one orbit.

Figure 42 shows the probability of collision with a fragment larger than 1 mm
2

in diameter for a spacecraft of 20 m cross section passing through the cen-

troid of the debris cloud represented by Table 2, at 900 mutual inclination

(total angle between the orbit planes) with the centroid orbit. These results

were obtained using the propagated cloud hazard model incorporated in the

kinematic model companion tool, Program DEBRIS (described in the following

section). Figure 42 shows the hazard for a single passage through the debrii

cloud center at any time during the first 24 hr after the collision event.

The most significant features of Figure 42 are the very large spikes in

collision probability encountered at even revolutions, when the cloud is

passing through the primary "pinch point," along with lesser rises observed at

the half-revolution points. It is clear that time averaging of collision

probabilities should be avoided when one is concerned with the actual hazard

to be experienced by a spacecraft at a specific location and time. While the

"average" hazard quickly falls below the level of hazard posed by the equi-

valent natural background flvx of meteroids (dashed line), the peaks remain

several orders of magnitude above this.
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Figure 42. Collision Expectation versus Cloud Position

Figure 43 compares the propagated results based on initial conditions

generated by the kinematic model with those of the "NASA" model. The upper

curve (kinematic model) of Figure 43 is identical to Figure 42, with the

horizontal scale expanded; the lower curve is based on Table 1, similarly

propagated. Two significant differences are observed:

a. The overall lower level of hazard predicted by the "NASA" model
during this interval, despite predicting a greater number of
orbiting fragments, is due to the fact that all but a small
fraction of these are assigned very high spread velocities,
resulting in their more rapid dispersal.

b. Displacement of the "NASA" model peaks, relative to those of the
kinematic model, is due to the "NASA" model forcing the cloud cen-
troid and larger fragments to the system center of mass of the two
colliding bodies, while the kinematic model possesses additional
degrees of freedom to permit a bimodal distribution of multiple
clouds with separate centroids. (In the particular case shown,
the second cloud centroid is suborbital, and its associated
fragments do not contribute significantly to the on-orbit hazards
beyond the initial expansion.)
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Figure 43. Comparison of Kinematic Model with "NASA" Model

7.8 CONCLUSIONS

As stated at the beginning of this section, the calculation of near-term

on-orbit debris hazards resulting from a collision of two spacecraft is highly

sensitive to initial characterization of the breakup. Improvements in subse-

quent propagation of the debris clouds cannot improve the results if the

initial conditions are wrong. The results shown in Figure 43 illustrate the

differences produced by differing characterizations of the same event, both in

the overall resultant hazard level and in the location of hazard peaks.

Identification of the "correct" overall or "average" level of hazard is

highly debatable and will remain so until much more definitive experimental

data on large-scale hypervelocity collisions become available. More work needs

to be done in this area; however, high cost has been a factor in limiting

experimentation of this nature.
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Section 7.7 shows plainly, however, that accuracy in locating the narrow

regions of peak hazard is of more importance than the particular numerical

value obtained. It is passage through these regions that will pose a signifi-

cant hazard to resident spacecraft, regardless of the precise numerical level

of that hazard. Protection of spacecraft from near-term hazards depends on

the ability to predict and avoid coincidences with these regions.

Experimental evidence to date indicates that the kinematic model pro-

vides credible representations of the distributional structure (and therefore

peak hazard regions) of debris clouds resulting from a spacecraft collision.

This should be sufficient to justify its further application to such problems.
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8. DESCRIPTION OF PROGRAM DEBRIS

8.1 INTRODUCTION

Program DEBRIS is described in this section. The program determines the

intervals during which a given payload satellite travels through an expanding

debris cloud and calculates the probability of collision associated with each

transit. This section provides a general overview of program execution. Also

included are detailed analyses of the algorithms used in DEBRIS. The necessary

inputs to use the program are discussed, along with the types of information

generated as output.

Program DEBRIS was developed to calculate the short- and long-term

probability of collision of a given payload satellite whose orbit is in the

vicinity of a newly formed debris cloud. The program determines the intervals

during which the satellite travels through the expanding debris cloud and

calculates the probability of collision associated with each transit. These

probabilities are then combined to obtain the cumulative probability of

collision, which is compared against the meteorite background to determine if

a significant hazard exists.

An unlimited number of payload satellites may be examined by DEBRIS

during program execution. A single maneuvering vehicle, such as the space

shuttle, may also be simulated.

The expanding debris cloud is propagated using the model developed in

previous sections. A number of sub-clouds, each composed of particles of

uniform size, distribution, and separation velocity, have been used to

represent a large debris cloud containing a diversity of particles.

8.2 PROPAGATION OF THE DEBRIS CLOUD

At time tl, a target spacecraft breaks up, causing the formation of a

debris cloud. At any subsequent time t, the debris cloud is modeled as a
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torus extending along the trajectory of the target orbit with an elliptical

cross section of varying dimension (Fig. 44). The center of the debris cloud

travels along an orbit with the same elements as the former orbit of the

spacecraft. The in-plane arc displacement between the leading and trailing

edges of the cloud increases linearly with time until the torus closes. The

cross-sectional dimensions of the cloud are functions of the total angular

displacement between the point of interest and the point where the target

spacecraft disintegrated.

PAYLOAD SATELLITE TRAJECTORY

S- --- tN

POINT OF
CLOUD FORMATION

Figure 44. Debris Cloud Propagation Model

The volume of the debris cloud may be calculated using either of two

methods. For purposes of calculating the probability of collision associated

with the passage of a payload satellite through the cloud, the smaller of the

two volumes will be used. This ensures that the collisional hazard due to the

cloud is not underestimated.

It is possible to represent a debris cloud as the aggregate of several

sub-clouds (Fig. 45). Each sub-cloud is composed of a different number of

debris particles, of uniform size and propagation rate. The superposition of
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Figure 45. Combination of Several Debris Clouds to Represent an
Aggregate Cloud of Varying Growth Rates

several sub-clouds, each with a different shape and density, is equivalent to

a larger cloud of nonuniform density.

8.3 EQUATIONS FOR DEBRIS CLOUD PROPAGATION AND VOLUME CALCULATION

For any time t measured from the time of cloud formation t1, the

dimensions and volume of the debris cloud may be calculated using the

following equations.
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It is assumed that the debris cloud grows at a uniform rate along the

trajectory of the target orbit. For times prior to torus closure, the

in-plane arc distance between the leading and trailing edges of the debris

cloud is equal to

L(t) = (LI + L2 )t (141)

where

LI = user-specified, leading-edge growth rate, km/min

L2 = user-specified, trailing-edge growth rate, km/min

The circumference C of an ellipse of semi-major axis a and eccentricity

e is given by

C = 2r (/2) (2- ) (142)

The time at which the torus closes (tCL) may then be calculated as

tCL = C (143)

(L1 + L2)

where C is the circumference of the target orbit.

For all times t < tCL' the length of the torus L is equal to

L = (LI + L2)tCL (144)

At any given point within the leading and trailing edges of the cloud,

the boundaries of the elliptical cross section are defined by Reference 22 as

a(t,e) = /[a 2 1 (t,O)]2 + [a 2 2 (t,8)] 2 ( 4- ) (145)
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and

b(t,e) = a33 (t,9) ( --) (146)

where

a(t,e) = semi-major axis of elliptical cross section, km

b(t,e) = semi-minor axis of elliptical cross section, km

e = total angular displacement from point where target was
broken up to point of interest (see Eq. (170)]

AV = expansion velocity of debris particles, km/sec

W= orbital mean motion of the reference orbit, rad/sec

a21 ,a2 2 ,a3 3 = functions previously introduced

In ordor to calculate the probability of collision associated with the

passage of a payload satellite through the debris cloud, it is necessary to

determine the volume of the cloud at different times. Assume that a satellite

enters the cloud at time t and angular displacement e0 exiting the cloud at

tNo eN (Fig. 46). Then, for to < t < tN and e°  tN' the cloud volume is

VOLl(t,O) = - lall(t,e) a22(tO)l + [a21(tO)]2

3
* a 3 3 (t,e)() (147)

where

all(t,e) = -3w t + 4 sin G (148)

a2 1 (t,O) = 2[1 - cos e + gl(t,O) (I + cos e)1 (149)

a22(t,e) = sin E + g2 (t,6) [SGN(sin e) - sin 9] (150)

a33(t'e) = g 3 (t) + Isin 01 (151)
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and

g 1 (t) = MINI[Ctt + c4(t- sin 0)], 11 (152)

g2 (t) = MIN 1Clt + gC4 (wt - sin 0), 1 (153)

g3(t) = MINjC 3t, (a w sin i )(Av )-I (154)

where

= inclination of reference orbit, rad

CIC3,C 4= constants discussed in Section 4

LEADING EDGE

TARGET ORBIT--
TRAJECTORY -

/

'I

TRAILING EDGE
- ELLIPTICAL

CROSS SECTION

Figure 46. Geometry of a Typical Pass Through the Debris Cloud

The function SGN(X) is defined as

X

SGN(X) = TX" if X * 0

SGN(X) = 0, if X = 0
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The functions gl, g2, and g3 model the effects of J2 and drag on cloud

propagation. As previously shown in Section 4, the constant CI incorporates

the J2 effect on the line of apsides, C3 shows the J2 effect on the line of

nodes, and C4 represents the effect of atmospheric drag. A second method for

calculating the volume of the debris cloud for (t,e) is

VOL 2(t,e) = ?r a(t,e) b(t,e) L(t) (155)

where a, b, and L are calculated using Eqs. (141) and (142).

If the difference between the total angular displacement at entry

(eo ) and exit (eN) is less than 10° , then the two volume functions are

evaluated at entrance and exit and averaged

-I

VOL = -(VOL (to, e ) + VOL (t e )] (156a)
1 2 1lo o INsN

- 1

VOL2 = -[VOL (to, e ) + VOL (t E) (156b)
2 2 2 0 2 N' 0N~1 (5

Otherwise, the two volumes are calculated from

iO N .= VOL (ti, )  (157a)
1=0

N

VOL2 = N VOL2(ti  e.) (157b)
1=0

where

N = + + INT({eN - e1 + 21 Ir [(tN to)(T) -11 /o )
N 0t INTtt to)180

t. to + (t - t )( (i = 0, 1, .. N)

i = determined through propagation of payload orbit

T = period of reference orbit
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The smaller of VOLI and VOL2 is used for the computation of the

probability of collision associated with (to$ t N). However, if (t + t N)/2

is greater than tCL , then VOL2 is always used as the volume of the debris

cloud.

8.4 DETERMINATION OF TRANSIT TIMES OF A SATELLITE
THROUGH THE DEBRIS CLOUD

The time intervals during which a satellite is within the boundaries of

the debris cloud may be determined from the simultaneous solution of two in-

equalities for all possible values of t

q(t) < 0 (158)

q2 (t) < 0 (159)

The function of qI(t) represents the distance from the payload satel-

lite to the leading or trailing edge of the cloud, measured in the orbital

plane of the debris cloud (see Fig. 47). The function q2 (t) represents the

out-of-plane distance from the payload satellite to the cross-sectional bound-

ary of the debris cloud (see Fig. 48). It is necessary that both of these

functions be nonpositive for the satellite to be inside the debris cloud at a

given time.

DEBRIS CLOUD

- -(t)

/

_________ PAYLOAD
/ SATELLITE

Figure 47. Illustration of ql(t)
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Figure 48. Illustration of q2 (t)

The global set of time intervals corresponding to multiple passes of a

satellite through the debris cloud may be found by solving Eqs. (158) and

(159) separately and taking the intersection of the two sets of intervals as

the result. This is accomplished in Program DEBRIS using a Newton-Raphson

iterative method. The derivatives of q, and q2 are numerically evaluated,

with the convergence tolerance set to 10-4 km.

For any given time t, the position () and velocity (R) of the center

of the debris cloud can be determined by propagating the position and velocity

of the target spacecraft from time tI to t. A unit-vector normal to the

target orbit plane (n) can then be defined as

n =- (160)

The current position ( p) and velocity (Rp) of the payload satellite

also can be determined through propagation of the orbital elements specified

at epoch for that satellite. The projection (Y p) of the satellite position

vector (R p) into the plane of the target orbit is defined as

P@

Yp = R - ( p 9 n)n (161)
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The angular separation of R and Yp, measured from R, can then be

calculated
4 4 4 4

= cos *R R n (162)
lyp R~ R

Using X, the true anomaly of the projection Y with respect to the

perigee of the reference orbit (f p) is then calculated

fp = f + X (163)

where f is the true anomaly of target (calculated from R and R). The radial

distance to the intersection of Y and the reference orbit trajectory is
given by

r a(l - e ) 2(164)
P I + e cos fP

where

a = semi-major axis of the reference orbit

e = eccentricity of the reference orbit

To evaluate the function ql(t), it is necessary to use incomplete

elliptic integrals of the second type, which are defined in terms of a central

angle rather than a focal angle (see Fig. 49). The central angle

corresponding to the true anomaly of the reference f is calculated in three

steps:

2 2 + 2 ae112
Q2 (ae) + + 2aeJR f cos

sin y ae sin f

:=f - Y (165)
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Figure 49. Relation Between Central Angle and Focal Angle

A similar procedure is used to find the central angle associated with the

true anomaly of Ip

2 2 2
Q = (ae) + (rp) + 2ae rp Cos fp

ae

sin y =- sin f
Q

rP = f p - y (166)

The arc displacement AL between the center of the debris cloud and the

projection of the satellite position vector onto the reference orbit plane can

then be expressed as

AL = a[E(R, e) -E(p, e)] (167)

where the function E(R, e) is defined as the incomplete elliptic integral of

the second type

-1 2.2

E(R, e) = 1i- e sin * d *
0
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For small values of eccentricity, Reference 22 provides a good approxi-

mate method for evaluating the integral

E(,G, e) = I(, + M)-1/ 2 2a + 4 sin 213
2  2

- M (2W + sin 213 cos 23)

M 
3

+ 48 (2 sin 2R + sin 23 cos 2 2)l

+ O(e8 ) (168)

where

2
M- e

2 - e

The function ql(t) (see Fig. 50) may then be evaluated as

ql(t) = IALI - tt (169)

i AL /

rYp
a-p

\ \ /

POINT OF INITIAL
CLOUD FORMATION

Figure 50. Determination of Satellite Position
Relative to Planar Debris Cloud
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If the angle y is positive, then the payload satellite is closest to the

leading-edge boundary of the cloud and L should be set equal to the leading-

edge growth rate, L V If the angle y is negative, then L should be set equal

to Z2, the trailing-edge growth rate.

Whenever the function q, is less than zero, the projection of the payload

satellite position vector is within the along-track limits of the debris

cloud. Once the torus has closed (t > tCL), ql is always negative.

The second necessary condition for the payload satellite to be inside the

debris cloud is that the function q2 be nonpositive. The previously calcu-

lated quantities Rp, IV IV y, and rp will be used in the evaluation of q2.

The angular distance ( p) from Y to the point where the target

spacecraft broke up is calculated by

ep = fp - f* (170)

where f* is the true anomaly of the point where the spacecraft broke up.

A vector (R D ) from the intersection of Yp with the target reference orbit
trajectory to the position of the payload satellite may be defined as

Yp

D = P ( P Y(171)
D PP P

The elevation angle (*) between D and Y may also be calculated

D P

cos * - (172)
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Using Eqs. (145) and (146), one may calculate the axes of the elliptical cross

section a(t, Op) and b(t, Op). The distance (rE) from the reference orbit

trajectory along to the boundary of the cross section becomes

2 =2 2 2b2 2 -i

rE b [I - (a2  b )a- 2 cos 2 (173)

The function q2(t) in Figure 51 may then be evaluated as

q2 (t) = I1DI - rE (174)

~CLOUD

Rp CROSS SECTION

b(t) I RD

Yp a(t)

Figure 51. Determination of Satellite Position
Relative to Debris Cloud Cross Section

8.5 DETERMINATION OF COLLISION PROBABILITY

Once the set of time intervals has been determined during which the

satellite is within the debris cloud, the probability of collision associated

with each transit can be calculated. This probability is a function of satel-

lite cross-sectional area, time spent in the cloud, relative velocity of the

satellite with respect to the debris particles, average cloud density, and the

total number of debris particles.
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The cumulative probability of collision (Pi) for a satellite which

travels through the i-th debris cloud a number of times can be defined as

M
S (1 - P.) (175)

1 j=l

where P. is the probability of collision associated with the j-th passageJ

through the cloud, and M is the total number of passes through the cloud.

For improved computational accuracy, Eq. (175) may be evaluated as

. = 1 - EXP L in(l - P (176)

If an aggregate of debris clouds is being used to represent a larger

cloud, then the procedures described previously must be applied separately to

each sub-cloud. The resulting sets of time intervals are then used to calcu-

late a cumulative probability of collision associated with each sub-cloud

[Eq. (176)]. The overall probability of collision corresponding to the entire

debris cloud (P) may then be calculated as

FN -

P 1 - EXP Lilln(l - P ij (177)

where P. is the cumulative probability of collision associated with the i-th

sub-cloud, and N is the total number of sub-clouds.

8.6 EQUATIONS FOR DETERMINING COLLISION PROBABILITY FOR
PASSAGE THROUGH THE DEBRIS CLOUD

This section describes the equations used to calculate the probability

of collision associated with a particular passage of a satellite through a

debris cloud.
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Assume that a satellite enters a debris cloud at time to and exits the

cloud at time tN. The position vector of the satellite at these two times

[( p(t ), A (t N)] can be determined using methods previously described. The
difference in true anomaly swept out by passage through the cloud may then be

calculated as

-1 P (to) 0 P (tN)
O= COS p (t0 ) I I p(tN)

+ 27r INT[(tN - to )(T) -1 (178)

where T is the period of the reference orbit.

The number of sub-intervals into which a will be divided may then be

calculated as

N = I + INT Icc({ 7 -1 (179)

An interval of 10* was chosen empirically.

The actual distance travelled by the satellite while inside the cloud

(d S ) may be approximated as

dS ( X = Itp(ti)I (180)
i=0

where t. = t + (i/N) (tN - t ).

During that same interval, the distance travelled by the cloud (d )

is approximately equal to

d = t81 N
c = (tN - t0 ) N .1 Ivp(ti))

1=0
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The quantity vp(t i ) is the average velocity of debris particles near

the satellite at time t. and is given by1

v(t) Ap(TPr- I/a) (182)

where a is the semi-major axis of the reference orbit, p is the gravitational

constant, and r is calculated frcm Eq. (164).P

The relative distance traveled by the satellites with respect to the

debris cloud (dreI ) becomes

drel = dS - cos(Ai)dC  (183)

where Ai is the difference in inclination between the satellite and target

orbit planes.

The effective volume swept out by the satellite moving through the

cloud (VOLp) may then be calculated as

VOL = ApId rell (184)

where Ap is the cross-sectional area of the satellite. The average volume

of the debris cloud associated with the region of passage (VOL CL) can be

found using either method previously described. These volumes are used to

compute the probability of collision associated with this partial passage

through the cloud:

r / VOL (185
P = 1 - EXP Np in VOL/J (185)

where Np is the total number of debris particles in the cloud.
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9. EFFECTS OF ECCENTRICITY ON THE VOLUME OF A DEBRIS CLOUD

9.1 INTRODUCTION

During evaluation of the collision hazard posed by the debris from an

orbital breakup of a spacecraft, it is necessary to define a region that the

debris would occupy. This region is a time-varying volume, with each particle

occupying a different orbit and all spreading out relative to each other.

The first approximation to this debris cloud volume assumes that, prior

to breaking up, the spacecraft in question is in a circular orbit about the

earth. Additionally, the linearized equations of motion are used, remaining

valid for small changes in relative velocities and over a small number of

orbits.

In this section, small values of eccentricity are added into the

equations of motion. By using a differential correction process, similar to

the work in Reference 23, one finds new functions involving the circular

solution and the changes in that solution due to eccentricity. Additionally,

the solution process allows for the orbital breakup to occur at any time

throughout the elliptical orbit.

This continuing process to refine the volume model leads to a greater

understanding of what is really happening, and allows for a more accurate

assessment of the collision hazard posed by the debris.

9.2 ANALYSIS

The solution process involves a number of fundamental techniques, as

well as some new ideas first introduced for this problem. Initially, the

equations of motion from Newton's laws are formulated; from there, the

solution is perturbed by adding eccentricity. The equations are linearized,

and the state transition matrix relating position and initial relative
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velocity is found. This procedure was used by Anthony and Sasaki (Ref. 24).

Finally, using a method developed specifically for this problem, one finds the

volume of the debris cloud.

Given an inertial frame (I) with origin at the center of the earth, and

a rotating frame (R), with Y being in the radial direction and Z being in the

out-of-plane direction as seen in Figure 52, the position vector of the target

and i-th piece of debris, respectively, is

r=rJ (186)

and

R. =XI + (Y + r) J + ZK (187)

while the vector between the target and the debris is

=. -r = xi + Y + ZK (188)

A i-th DEBRIS PARTICLE

VEHICLE (after breakup)

WITHOUT
BREAKUP- \ A

A
K

INERTIAL
0 REFERENCE

FRAME

Figure 52. Coordinate Frame
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The differential equations in the inertial frame for this inverse square field

are

2-(1)
dR _ (189)

dt2  r 3 R3

The left side of Eq. (189) is obtained by taking the derivative of Eq. (188)

in the inertial frame

-(I) -(R)
dR dR +(190)- + w x R 10

dt dt

where

d-(R) 

(191)

- XI + YJ + ZK (191)dt

and

W = 9K(192)

The second derivative of Eq. (190) in the inertial frame is

d 2 R( I )  d L(R) gd

dt2  dt dt 
(  dt

When the right-hand side of Eq. (189) is expanded and the individual compo-

nents, are equated, the equations of motion become

X -Ye - 2M6 - 2x + 2x 2 = 0 (194a)
[X2 + (Y + r)

2 + Z2] 3 / 2

,o oX9 + 20 _ 62y + P(Y + r) = 0 (194b)
[X2 + (Y + r)2 + 2]3/2

Z + 2 f2i 0 (194c)
[X2 + (Y + r)

2 + Z2] 3 / 2
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Nondimensional terms are introduced such that

x = - (195)
a

y = - (196)
a

z = - (197)
a

r (198)
a

'Ta( 3) / (199)

where a is the semi-major axis of the reference orbit, so Eqs. (194) reduce to

x" -y" - 2y'e' -E2x+ 2 23/2 =0 (200a)[x + (y + p)2+ z213/

y + xe" + 2xe y - ,2y + (y + p)2 + -2 2  = 0 (200b)

z

z" + 2 2 2 3/2=0 (200c)
[x + (y + p) + z ]

where ' (prime) represents differentiation with respect to x. Assuming that

the distance between a debris particle and the target is much less than the

semi-major axis, one finds that Eqs. (200) further reduce to

x"f - ye', - 2y'o' + L - 9' x - ix 0 (201a)
P P

y + xO" + 2x'9' - ( 1 + y - -- (x 2 - 2y2 + z2) = 0 (201b)

\ p3 2p4

zoo + 3zy = 0 (201c)
3 4
P P
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For a slightly elliptical orbit, the series for e and R are

e = _1/2 [1 + 2e cos M + e cos 2M + ]a3 2'

(AV) [I - e cos M + 2 (1 - cos 2M) + ... ] (202)

where

M= j)31/2 (t - tp) (M - mean anomaly)

(a (t - time of periapsis passage)P

Nondimensionally, and retaining only linear terms, Eq. (202) becomes

0' = I + 2e cos(T - Tp)

p = I - e cos(t - Tp) (203)

For the circular target orbit, the Clohessy-Wiltshire equations take the form

Xc" - 2yc = 0 (204a)

yc" + 2xc - 3Yc = 0 (204b)

zc" + zc 0 (204c)

Now, assuming a new solution for x, y, and z, in the form

X = Xc + &x (205a)

Y = Yc + &y (205b)

z = zc + &z (205c)

When one takes appropriate derivatives, while retaining only linear terms, the

new differential equations, in terms of the perturbations on x, y, and z, are

&x" - 26y' = e[(4y c + x c)COS(T - T) - 2y csin(T - p) (206a)

&y" + 2&x' - 36y = e[(lOy - 4x')coS( - T ) + 2x sin(T - Tp)] (206b)c c p c p

&z" + &z = - 3ez ccos(T - x ) (206c)
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Initially

x(O) = Sy(O) = 6z(O) = 6x'(O) = 6y'(O) = 6z'(O) = 0

Assuming a solution of Eqs. (206) in the form

&x = e[A 0O + Asin + A 2cos T + A 3sin 2T

+ A 4cos 2T + A5 + A6 sin T + A 7T cos TI (207a)

6y = e[B 0 + B1sin x + B 2cos T + B 3sin 2T

+ B4cos 2T + B5 c + B6T sin T B7 T cos T] (207b)

6z = e[C 0 + C1 sin T + C2cos T + C3sin 2-t

+ C 4cos2 T + C5 x + C6 sin t + C 7T cos T] (207c)

where

A = -3xO sin T cos p0 0 ~p 2 ; os Tp

A = 6y; sin t1 0 p

A = 6x' sin x + 2y Cos T2 o p o p
3 , + 3x' cos T

3 2yo sinp p

A = -3x' sin p Y coL T
3o '4 0 p 2

A 5 = -3y; sin p 3x; Cos tp

A6 = -3Xo sin p

A 7 = -3x Cos I p (208)

BO = -3yo sin p 4x; cos tp

B I = -xo sin Tp -2y; cos p

B2 = 4yO sin p + 2x cos -p

B3 = 2x; sin Tp + Y; cos tp (209)
(cont.)
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B4 = - y; sin 2x cosp

B5 = 0

B6 = 3x Cos I p

B7 =- 3x o sin Tp (209)

C0 = _ 3 z' sinT

C = 2z' sin T
2 o p

C = z' cosT
3 2o p

1
C = - I z° sinT
04 2 o p

C5 = 0

C6 = 0

C7 = 0 (210)

When Eqs. (208) through (210) are inserted into Eqs. (207), and the results

placed in matrix form

6x =[1 sin T coB T sin 2T -3e sin Tp 1 COe To 0p 2 0 X

cos 2T T sin T T cos x] 0 6e sin T p 0 y

6e sin T - e sin T 0 Z;
p 2p

3e cos x - 3e sin Tp 0

3
-3e sin - cos T 0

-3e cos Tp -3e sin T p 0

-3e sin Tp 0 0

3e cosT 1 p 0 0

135 (211a)



y [ -4e cosi -3e sin I 0 i

-e sin T p -2e cos 'Tp 0 Yo

2e cos Tp 4e sin Tp 0 zo J
2e sin xp e cos Tp 0

2e cos xp -e sin Tp 0

0 0 0

-3e cos xp 0 0

-3e sinT p 0 0

= [*] [BE] Ixoi (211b)

2 p O

0 0 -e cos xp YO

0 0 2e sin Ip zo

1
0 0 2ecos p (211c)

0 0 e sin ip

0 0 0

0 0 0

0 0 0

= i~]I [CEJ X.

In a more compact form, Eqs. (211) become

6x J~~1 [AEF x

Sy [BE] Y (212)

6y i.[] [CE z
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Similarly, the Clohessy-Wiltshire equations can be written in the same form

= i~ [AC]

whee E = (~ BC] 1 yo, (213)zc = L [CCU Zo

where

0 2

0 -2 0
[AC]= 0 0 0 (214a)

30 0

-2 0o 6
0 1 0
2 0 0

[BC]= 0 0 0 (214b)
0 0 0
0 0 0
0 0 0

0 0 1
0 0 0

[cc] = 0 0 0 (214c)
0 0 0
0 0 0
0 0 0
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Combining these two solutions(1 r
+ Yy = [$1 [B Y; (215)

z zJ [-W.] [C] Zo

ix = [M'I ]x o

where

-- 1

-3e sin -T 2 e cos T 0

4 6e sin Tp 0

6e sin Tp -2 + 2e cos Tp 0

[A] [AC] + [AE] = 3e cos xp 3 esint 0 (216a)

3
-3e sint -T ecosp 0

-3 - 3e cos p -3e sin- p 0

-3e sin Tp 0 0

-3e cos Tp 0 0

- - 4e cos cp -3e sin 0

-e sinx p 1 - 2e cos ip 0

2 + 2e cos Tp 4e sint p 0

[B] = [BC] + [BE] = 2e sinT p e cosT p 0 (216b)

2e cos Tp -e sin Tp 0

0 0 0

-3e cos Tp 0 0

-3e sin Tp 0 0
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0 0 e sin Tp

0 0 le cos Tp

0 0 2e sin Tp

[C] = (CC] + [CE] = 0 0 1 e cos p (216c)

0 0 le sin p

0 0 0

0 0 0

0 0 0

The volume of a debris cloud

V det T1/2 (217)

This differential correction process is very useful and can be utilized for

many other types of perturbations, simply by getting the perturbation in the

form of Eq. (211) and adding the 8 x 3 matrices together with the linear

solution of Eq. (216).

9.3 RESULTS

The effects of location in an elliptic orbit are shown for various

values of eccentricity from 0 to 0.25 in Figures 53 through 60. For perigee

and apogee breakups, the volume profiles are very similar to a circular case.

However, at points halfway between apogee and perigee (Tp = 90-, 270-),

there is a distinct deviation for different eccentricities. As e approaches

0.25, the analysis deteriorates and produces doubtful results.
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9.4 CONCLUSIONS

As shown in the results of this analysis, the addition of eccentricity

to the initial orbit of a spacecraft prior to orbital breakup has a distinct

effect on the evolution of its debris cloud. For very small changes in eccen-

tricity (from e = 0.01 to e = 0.05), subtle, yet distinctive, characteris-

tics are present. At apogee ond perigee breakups, the half-orbit zero puints

are the same as the circular case; but when the breakup occurs at some other

time, that half-orbit zero point moves away from exactly half an orbit.

Although not obvious for the e = 0.01 case, this half-orbit point shift becomes

more apparent as eccentricity increases. Additionally, as eccentricity

reaches 0.25, the assumption that e2 terms are dropped becomes invalid and

produces doubtful results.
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Figure 53. Volume versus Time; T = 0° (perigee)p
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Figure 55. Volume versus Time; t = 90°
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Volume vs. Number of Orbits
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Figure 57. Volume versus Time; 'r = 1800 (apogee)p
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Volume vs. Number of Orbits
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APPENDIX A

DEBRIS CLOUD VOLUME AS A FUNCTION OF TIME

The determinant of M in Eq. (4) is the volume of a parallelepiped P in

three-dimensional space, when the edges of P are obtained from the rows of M as

illustrated in Figure A-i (Ref. A-I). To show this, suppose that all angles in

Figure A-i are right angles or that the edges of P are perpendicular. Then the

volume is

VOLUME = 11 12 13 (A-I)

Since the edges of P are the rows of M (or columns with a different P

but the same volume) which are mutually perpendicular, the orthogonality of

the matrix M yields

M MT = L 2 (A-2)

0 0 12

The I2 , 12 , 12 are the squares of the lengths of the rows, and the

zeroes off the diagonal are the result of orthogonality of the rows. Taking

determinants

det [M TM I = [det MI (det M 
T

= (det M]2

2 2 2
= 1 1 2 12

1 2 3

= (VOLUME)2  (A-3)

If the region is not rectangular, M is not an orthogonal matrix and the

volume is no longer the product of edge length. However, a transformation can

be found which diagonalizes M; this is analogous to finding the "principal" or

orthogonal axes for the system. The corresponding elements of the diagonal
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(a11, a12, a13)

I

x

(a31, a32,'a33)(2 a ' 23

z

Figure A-i. Volume of Determinant M

matrix are the required lengths of P. They can be determined as follows:

find the roots of M by solving the characteristic equation

IM - 'II= 0 (A-4)

where I is the unit matrix.

For the case in Eq. (5), Section 2, the characteristic equation is of the

form

[(a11 - X) (a22 - X) - a12 a21] (a33 - X) =0 (A-5)

The roots of the characteristic equation are

kI  a a33

(al1 + a a22) ± (a 22)2 _ 4(a 1 a22 a 12 a21) 1/2

2,3 2
(A-6)
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where the X2,3 roots are obtained from the bracketed term in Eq. (A-5). The

product of the three roots X1, X2, X3 represents the volume of the cloud. Since

the volume is a positive scalar quantity, the product of the roots must be a

real positive value. The necessary and sufficient conditions are that

Xl = 1a33 1 (A-7)

and

X2 ° '3 > 0 (A-8)

The second condition can be satisfied if X2 and X3 are complex ;onjugates

(since the product of two conjugate complex systems is positive) or both

>2, 13 roots are positive real numbers. Since the roots represent the sides

of P, only the condition

A2,3 > 0 (A-9)

needs to be satisfied. This requires that the terms in the radical satisfy

the condition

(a11 + a22 )
2 > 4(a11 a 22  a 12 a2 1 ) (A-10)

or that

al a22 a 12 a21 >0 (A-lI)

In terms of the matrix (Eq. (5), Section 21, it is necessary and

sufficient that

ad + b2 > 0 (A-12)
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Physically, this means that the area of the cloud in the x,y plane is

always finite and positive except at e = 0, 360 °, et cetera, when it is

zero. The normalized volume of the cloud is of the form

VOLUME = d- met [M] (A-13)
3

where

det[M] = I(a 1 1 a22 - a12 a2 1 )1 - Ja3 3 1

= I(ad + b2 )1 Idl

= i2 1J 2 3

Equation (A-13) is the volume of a spheroid with the semi-major axes

Q19 2 2 3 resulting from the application of a unit velocity impulse to

particles with uniform (spherical) distribution in the x,y,z reference frame.

By analogy, the area of the cloud in the x,y plane can be expressed as

AREAxy = ir1 2

= irlad + b2 1 (A-14)

This is for a circular distribution of the unit velocity impulse in the x,y

plane.

A-4



APPENDIX B

UNIFORMLY DISTRIBUTING POINTS ONTO A SPHERE

B.1 INTRODUCTION

In the development of a collision breakup model, a basic problem is to

determine the resulting fragments' directions. In our model, the fragment

directions are chosen randomly from a uniform distribution of directions.

This appendix describes the method for determining the uniform distribution of

directions. These directions are equivalent to points projected onto a

sphere. Uniform distribution then means that all adjacent point- oft the

sphere are equidistant from one another. The method can be applied to both

collision and explosion models.

Following a description of the method to uniformly spread points onto a

sphere, two examples of its use will be presented using a satellite explosion.

A satellite in an orbit which has a semi-major axis of 4444 nmi is assumed to

explode uniformly, imparting a velocity of 1000 ft/sec on all the fragments.

In the first example, the satellite is in a circular orbit; in the second, it

is in an elliptical orbit. The resulting orbits for each fragment are

computed using the On-Line Orbital Mechanics (OLOM) program.

B.2 ANALYSIS

The method for distributing points uniformly onto a sphere is the same

as that used for constructing geodesic domes. The method starts with the

fifth regular polyhedron (platonic solid): an icosahedron. Convex polyhedra

are considered regular if they have faces that are regular polygons and all

the polyhedral angles are congruent.

An icosahedron has 12 vertices and 20 faces, which are equilateral

triangles (Fig. B-la). The distance from any vertex to the geometric center

is the same. Hence, if a sphere were circumscribed about an icosahedron, its

geometric centers would coincide and the 12 vertices would all lie on the

surface of the sphere. Since the distances between two adjoining vertices of
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a regular polyhedron are equal, it follows that the arc lengths on the surface

of the sphere, joining any two adjacent vertices, also are equal. Thus,

simply by circumscribing a sphere about an icosahedron, we have found 12

points uniformly distributed on a sphere.

In order to distribute more points about the sphere, first establish the

origin of a three-dimensional, rectangular coordinate system at the geometric

center of the polyhedron as shown in Figure B-lb (which is Fig. 6 in Ref. B-1).

This orientation is for geometrical calculations. Table B-1 lists the coordi-

nates of the 12 vertices of the principal polyhedral triangles (PPT). A PPT

is any one of the equal equilateral triangles which forms the face of the

regular polyhedron (Ref. B-1).

Table B-I. Coordinates of the PPT's Vertices of an Icosahedron

Vertices: ( 1/ 4  1/4 -

(0, + O/5 , + 1/5 t)

(+ 11514 /T 0, +5

(+1_/ 1/4, + '(/ / 0)

where

Il+ 15
- 2 - 1.61803

P1 = (0, 4 l/ , 1 ,/4 / ) = (0, 0.85065081, 0.52573111)

P2 = (1/51/4 VI ' O, V/ /51/4) = (0.52573111, 0, 0.85065081)

P3  (A/r/51 / , 4 T, 0) (0.85065081, 0.52573111, 0)
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Figure B-la.. Icosahedron

Z
tP2

x

.P3

Figure B-lb. Three-Dimensional Coordinate System at
the Geometric Center of the Polyhedron
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The next step is to subdivide the PPT into frequency N as shown in

Figure B-2a. The frequency is the number of parts or segments into which a

principal side is subdivided. A principal side is any one of the three sides

of the PPT (Ref. B-I). Figure B-2b shows how each subdivision point is

connected by line segments parallel to their respective sides. A grid of

equilateral subtriangles is generated.

The coordinates of the equilateral subtriangle vertices (X I, YIJV

Z j) are obtained from Eq. (B-I)

XXI X I 2 X 3 - X2
Ij 1 N N

Y2 - Y1 Y3 - Y2

IJ 1 N N

z2 - z1  z3 - z 2

z = z + I N 3 N (B-l)

where N is the frequency, (XI , YI, Z1 ) (X29 Y2' Z2 ) (X3, Y3 9 Z3 ) are the

coordinates of the PPT vertices, and I and J are integers such that 0 < J

< I < N (Ref. B-2). The I and J have unique values for each vertex; they

label each vertex as shown in Figure B-3 (which is Fig. 10 in Ref. B-3).

For the purposes of this study, it is necessary only to calculate each

vertex direction from the origin and not the vertex distance from the origin.

This is calculated by doing a coordinate transformation from rectangular to

spherical coordinates for each subtriangle vertex of each PPT. The resulting

spherical coordinates of each vertex direction (0, *) represent the direc-

tions in which Av's are applied for each particle of the exploded satellite.

These coordinates, along with specified orbital parameters and a specified

Av, are input to OLOM. Orbital parameters are computed for each particle

from the exploded satellite.
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Figure B-2a. Subdivided PPT into Frequency N

1 2

Figure B-2b. Grid of Equilateral Subtriangles in PPT
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B.3 EXAMPLE 1

In this example, the satellite is assumed to be in a circular orbit with

a 1000-nmi (a = 4444 nmi) altitude. The inclination is 28.5, and the

satellite is at its southernmost point when it explodes. The Av applied to

each particle from the explosion is 1000 ft/sec. A frequency of N equal to 7

is used to generate the particles.

One interesting result is obtained by graphing each particle's resulting

apogee and perigee against its period (Fig. B-4). This result was origin-

ally demonstrated by John Gabbard (Ref. B-3). Figure B-4 has two wings that

meet at a point. The upper wing shows the fragment apogees plotted against

their periods, and the lower wing shows the perigees versus the periods. Two

points are plotted for each fragment. Note, also, the uniform distribution of

particles in this figure.

To calculate the number of particles generated by this method, recall

that an icosahedron has 12 vertices, 20 faces, and 30 edges. If a PPT is

subdivided into frequency N, then the number of particles (NP) generated is

N-2
NP = 12 + 20 Xi + 30(N -1) (B-2)

i=l

5
Thus, for N = 7, NP = 12 + 20 X i + (30 x 6) = 492 particles are generated.

i=l

However, since Figure B-4 plots apogee and perigee versus period for each

particle from the explosion, Figure B-4 has 984 points plotted.

In order to more fully understand the relation between the location of a

point on the curve and the actual direction of the Av that generated that

point, Av's of 1000 ft/sec were applied in 10* increments in three orthogonal

planes. The planes are the yaw, pitch, and roll planes shown in Figure B-5.

The yaw plane is defined by the velocity vector and the momentum vector

r x . The pitch plane is defined by the radius I and velocity V vectors.

The roll plane is perpendicular to the other two planes.

B-6



(0, 0)

(1, 0)(1, 1)

(2, 0) ( 1) 2, 2)

3 ) (3, 1) (3, 2) (3 )

(N-3, 0) (N-3, N-3)

(N-2, 0) (N-2, 1) (N-2, 2) (N-2, N-3) (N-2, N 2)

(N-i, 0) (N-i, 1) (N-i, 2) (N-1, N-3) (N-1, N-2) (N-, N )

(N, 0) (N, 1) (N, 2) (N, 3) (N, N-3) (N, N-2) (N, N-i) (N, N)

Figure B-3. Breakdown Numbering
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Figure B-4. Fragment Apogees and Perigees versus Their

Periods from a Satellite Exploding Uniformly

(A = 4444 nmi; ECC = 0; NF = 492)
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Figure B-5 also shows that the 0* direction in both the yaw and pitch

planes is in the V direction. The 0* direction for the roll plane is in the
+ 4
-r x V direction. For both the roll and pitch planes, the 900 direction is the

r direction, and for the yaw plane it is the -r x V direction.

Figure B-6 shows the resulting apogees and perigees from a 1000 ft/sec

Av applied in 10° increments in the three orthogonal planes shown in Figure

B-5. Notice first that the results in both the yaw and pitch planes are

symmetric about 1800; the results are the same, for example, whether the angle

is 1300 or -130*. The roll plane is symmetric about 90* and 180*; the results

are the same, for example, whether the angle is 50, -50, 130, or -130*

Also note that, as expected, the Av applied in the V direction (yaw and

pitch direction is 0*) yields the highest energy orbit. When the Av is

applied solely in the roll plane, the resulting orbit period is nearly that of

the parent body.

The final point is made by comparing Figures B-4 and B-6. The outline in

Figure B-4 that contains all points is the same outline in Figure B-6 that was

produced from a Av applied in the yaw and pitch planes. The thickness of

the outline is determined in the roll plane. Thus, an idea of the pitch, yaw,

and roll angles of the applied Av can be determined for any specific point

in Figure B-4.

B.4 EXAMPLE 2

The assumptions in this example are the same as those in the first, except

that this orbit has an eccentricity equal to 0.05. The semi-major axis is

4444 nmi, the inclination is 28.5*. The Av applied to each particle from

the explosion is 1000 ft/sec. Finally, the frequency used to distribute the

particles is 7.
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Figure B-S. Angles in Three Orthogonal Planes
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Figure B-6. Apogees and Perigees versus Period for Av = 1000 ft/sec
Applied in Three Orthogonal Planes to an Object in
1000 mi Circular Orbit
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Figures B-7 and B-8 show the resulting apogees and perigees of the

exploded fragments versus their periods at two positions in the orbit.

Figure B-7 shows the resulting altitudes if the explosion occurs at perigee

(h = 778 nmi), while Figure B-8 shows the altitudes if the explosion occurs at

apogee (h = 1222 nmi).

An interesting observation can be made by comparing the two figures.

Figure B-7 shows that the altitude range of the fragment perigees (resulting

from the explosion at perigee) varies from 490 to 778 nmi. Figure B-8 shows

that the altitude range of fragment perigees (resulting from the explosion at

apogee) varies from 100 to 1222 nmi. The median perigee altitude for both

cases is near 650 nmi. The observation to be made is that the perigee

altitudes go much lower in Figure B-8 than in Figure B-7. Thus, some of the

particles in Figure B-8 will reenter the atmosphere relatively quickly,

whereas no particles will reenter quickly in Figure B-7. Therefore, from a

debris hazards standpoint, if a satellite is to be exploded in orbit, a case

can be made for exploding it at apogee rather than perigee.

B.5 SUMMARY

This appendix presents a geometric method for uniformly distributing

points onto a sphere. Two applications of its use are presented using a

satellite explosion. The first application is a satellite explosion in a

circular orbit, and the second is an explosion in an elliptical orbit. Graphs

are presented showing the apogees and perigees of the resulting fragments

versus their periods.
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Figure B-7. Fragment Apogees and Perigees versus Their Periods
from a Satellite Exploding Uniformly at its
Perigee (A = 4444 nni; ECC = 0.05; NF = 492)
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Figure B-8. Fragment Apogees and Perigees versus Their Periods
from a Satellite Exploding Uniformly at its
Apogee (A = 4444 nmi; ECC = 0.05; NF = 492)
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